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1. Manifolds

1.1. Introduction

We serve to give the reader the shortest introduction to
manifold theory. This and the subsequent two chapters are
loosely based on [Lan12; Lee13], and the symbols E ,F will
always denote Banach spaces, and all Banach spaces are
assumed to be over R. We sometimes say E (resp. F ) is a
space for brevity, and

• L(E ,F ) = linear maps between E and F ,

• L(E ,F ) = toplinear (continuous and linear) maps be-
tween E and F ,

• Topliso(E ,F ) = toplinear isomorphisms between E
and F ,

• Laut(E) = toplinear automorphisms on E , which form
a strongly open subset of L(E ,E).

We will be working in the category of C p Banach spaces
— where p ≥ 0. The morphisms in the category of BanR

are called C p morphisms, which are p-times continuously
differentiable functions.

Definition 1.1 Morphisms between open subsets of
Banach spaces

Let E and F be Banach spaces, and U ⊆ E , V ⊆ F be
open subsets. A mapping f : E → F is of class C p if
f ∈C (E ,F ) and Eq. (1) holds.

D (i ) f : E → Li (E ,F ) exists and is continuous for i = p
(1)

C p (E ,F ) denotes the vector space of C p mappings be-
tween E and F . Sometimes, we restrict our attention
to open subsets of E and F , in this case: f ∈C p (U ,V ) if
f ∈C (U ,V ) and Eq. (2) holds.

D (i ) f : U → Li (E ,F ) exists and is continuous for i = p
(2)

We sometimes write C p for C p (E ,F ) when it is clear.
A C p isomorphism is a bijective C p morphism whose
inverse is also a morphism.

Remark 1.2 Implicit assumption

In Eq. (2) we assumed that f (U ) ⊆ V . This is a non-
trivial part of the definition of C p morphisms between
E and F , we will come back to this in Def. 1.13.

Let f1 and f2 be mappings, and X a non-empty set.

• We say they are composable if either one of f2 ◦ f1 or
f1 ◦ f2 makes sense.

• We also write f2 f1 to refer to f2 ◦ f1 if there is no ambi-
guity.

• If U ⊆ X and V ⊆ Y , and f : U → V is a bijection —
meaning f (U ) = V and f is injective, we say f is a bi-
jection between U and V .

• With regards to inverse image notation, we allow our-
selves to write

f −1
2 ◦ f −1

1 is the same as f −1
2 f −1

1

and inversion is never left associative.

f2 f −1
1 = f2 ◦ f −1

1 6= ( f2 ◦ f1)−1

1
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Composable C p mappings are functors in the category of
open subsets between Banach spaces. Few basic facts
about C p morphisms:

• If f is a toplinear mapping between E and F , then f ∈
C p (E ,F ) for all p ≥ 0.

• If f is a bijective toplinear mapping, then it is a C p

isomorphism for all p ≥ 0.

• However, a bijective C p morphism need not be a C p

isomorphism.

1.2. Structure of a manifold

It is fruitful to construct the manifold rather than define it.
We also insist on working with open sets of Banach spaces
instead coordinate functions as our primary data.

Definition 1.3 Chart

Let X be a non-empty set. A chart on X modelled on
a Banach space E is a tuple (U ,φ), such that U ⊆ X ,
φ(U ) = Û is an open subset of E , and φ is a bijection
onto Û .

Definition 1.4 Compatibility

Let (U ,φ) and (V ,ψ) be charts on X modelled on E ,
they are called C p compatible (for p ≥ 0) if U ∩V =∅,
or both of the following hold

• φ(U ∩V ) and ψ(U ∩V ) are both open subsets of
E , and

• the transition map ψ◦φ−1 : φ(U ∩V ) →ψ(U ∩V )
is a C p isomorphism between open subsets of E .

Definition 1.5 Atlas

Let X be a non-empty set and p ≥ 0. A C p atlas on X
modelled on E is a pairwise C p compatible collection
of charts {(Uα,φα)} whose union over the domains
cover X .

We will assume hereinafter that atlases are of class C p for
p ≥ 0. Let X be a non-empty set, equipped with an atlas
{(Uα,φα)} modelled on a space E . Suppose α, and β both
index the atlas.

• We write Ûα to refer to φα(Uα), and

• p̂ = φα(p) for p ∈ Uα when it is clear which chart we
are using.

• Uαβ = Uα ∩Uβ, and if Uαβ 6= ∅: the transition map
from α to β is defined in Eq. (3).

φαβ
4=φβ|Uαβ

◦
(
φα|Uαβ

)−1
: φα(Uαβ) →φβ(Uαβ) (3)

• We often suppress the restrictions of the two charts in
the composition, and Eq. (3) reads

φαβ =φβ ◦φ−1
α =φβφ

−1
α (4)

Remark 1.6 Omissions of C p

We might refer to two charts as compatible or smoothly
compatible, implying they are C p compatible. This
comes from the perspective that, in the context of C p

manifolds, any smoothness exceeding C p is deemed
sufficiently smooth for our purposes. We also say C p

for C p where p ≥ 0.

Definition 1.7 Structure determined by an atlas

Let A be an atlas on X , the maximal atlas containing
A is called the C p structure determined by A.

Definition 1.8 Manifold

A C p manifold modelled on E is a non-empty set X
with a C p structure modelled on E . We refer to E as
the model space of X .

Proposition 1.9 E is a manifold

The identity idE defines an atlas on E , which deter-
mines a C p structure called the standard structure of
E for p ≥ 0. We call (E , idE ) the standard chart on E .

Proposition 1.10 Topology is unique on a manifold

Let X be a C p manifold modelled on E , it induces a
unique topology such that the domain for each chart
in its smooth structure is open, and each chart is a
homeomorphism onto its range in the subspace topol-
ogy.

Proof. We offer a sketch of the proof. Fix a chart (U ,φ),
it is clear that U has to be in the topology of X , and be-
cause φ : U → Û is required to be a homeomorphism, we
duplicate all the open sets in Û by using the inverse image
through φ. The collection of all such inverse images form a
sub-basis, thus defines a unique topology as is well known.

There is an alternate way constructing the above topol-
ogy. The existence of a coarsest topology on a chart do-
main U such that if (V ,φ) is another chart whose domain
V ∩U 6=∅, then φ|U∩V is a homeomorphism onto its range.
Stitching the weak topologies together, we obtain an ambi-
ent topology on X [Lan12]. ■
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Remark 1.11 Omission of model space

For any of the objects we have defined in this section,
that depend upon a model space or a morphism class
(i.e C p ), we will say ’X is a manifold’, rather than X is
a manifold of class C p modelled over E when it is con-
venient to do so. If the model space E is infinite (resp.
finite) dimensional, we say X is infinite (resp. finite)
dimensional. And a reminder: C p should always be
interpreted with p ≥ 0.

Proposition 1.12 Open subsets of manifolds

Let U be an open subset of a manifold X , then U is a
manifold whose structure is determined by the atlas A
in Eq. (5).

A=
{

(V ,φ) in the structure of X , where V ⊆U
}

(5)

Proof. The structure of X includes all possible restrictions
to open sets; hence A in Eq. (5) is an atlas, and a unique
structure by Def. 1.7. ■

1.3. Morphisms between manifolds

Definition 1.13 Morphisms between manifolds

A mapping f : X → Y between manifolds is a mor-
phism (a C p morphism to be precise) if for every p ∈ X ,
there exist charts (U ,φ) ∈ X and (V ,ψ) ∈ Y such that 1)
the image f (U ) is contained in a the chart domain V ,
and 2)

fU ,V
4=ψ◦ f ◦φ−1 ∈C p (Û ,V̂ ) in the sense of Def. 1.1.

(6)
The map fU ,V as defined in Eq. (6) is called the coor-
dinate representation of f with respect to the charts
(U ,φ), (V ,ψ).

Remark 1.14 Identifying X with its structure

If (U ,φ) is a chart in the structure of X , we will simply
say (U ,φ) is in X .

Remark 1.15 Identifying charts with their domains

The scenario in Eq. (6) occurs so often that we decide
to simply write

fU ,V =ψ f φ−1 (7)

to mean there exists charts (U ,φ), (V ψ) in the struc-
ture of X , Y with

f (U ) ⊆V (8)

Consistent with the notation of putting hats on objects

borrowed or pulled back from the model spaces, we
write f̂ = fU ,V . Equation (9) gives an example of this.

f̂ (p̂) = fU ,V (p̂) = fU ,V (φ(p)) (9)

for any morphism f ∈ Mor(X ,Y ), and charts that sat-
isfy Eq. (8). We refer to the map in Eq. (9) as a coor-
dinate representation of f about p, with the inference
that p ∈ (U ,φ).

Definition 1.13 may leave one unsatisfied. Why do we re-
quire the image f (U ) be contained in another chart do-
main in Y ? There are two reasons.

Continuity Suppose f is a map between E and F , and the
restriction of f onto a family of open subsets Uα ⊆ E is C p

for p ≥ 0. If {Uα} is an open cover for E , then f is contin-
uous. Proposition 1.16 shows this equally holds for mani-
folds.
Implicit assumption The definition of smoothness be-
tween open subsets of Banach spaces (see Def. 1.1) is a
purely local one. And let us recall: every chart domain U
in a manifold X corresponds to an open subset Û ⊆ E in
the model space, and see Rmk 1.2 as well. Hence, the ne-
cessity that the image f (U ) is contained in a single chart
domain of Y is a relic of the original definition. The as-
tute reader will also see that the openness requirement of
ψ(U ∩V ), and φ(U ∩V ) in Def. 1.4 is completely natural as
well, since C p morphisms are defined between open sub-
sets of Banach spaces.

Proposition 1.16 Properties of morphisms between
manifolds

Every C p morphism between manifolds is a contin-
uous map, and the composition of C p morphisms is
again a morphism.

Proof. The first claim is proven if we show f is locally con-
tinuous. Using Equation (6), since p is arbitrary, choose
any neighbourhood W of f (p), by shrinking this neigh-
bourhood, it suffices to assume it is a subset of the chart
domain V . The charts on X and Y are homeomorphisms,
and unwinding the formula shows that f |U =ψ−1 fU ,V φ, so
that

U ∩ f −1(W ) = ( f |U )−1(W ) is open in X .

To prove the second, let X3 be manifolds modelled over
E3, and f1, f2 is smooth between Xi such that f2 ◦ f1

makes sense. Since f1 is smooth, one finds a pair of
charts (Ui ,φi ) ∈ Xi for i = 1,2 about each p ∈ X1 such
that ( f1)U1,U2 is a morphism.

f2( f1(p)) induces another pair of charts (Vi ,ψi ) ∈ Xi for
i = 2,3. Since f2 is smooth, it is continuous. f −1

1 ◦ f −1
2 (V3)

is open in X1, and we can shrink all of our charts so that

Updated 2024-11-13 at 17:11 Page 3



Geometry 1. Manifolds

f2 f1(U1) is contained in V3. Finally, because C p morphisms
between open subsets of Banach spaces is closed under
composition, fU1∩ f −1

1 f −1
2 (V3),V3

is smooth. ■

Remark 1.17 Morphisms between C k , C p manifolds

Let X be a C k -manifold, and Y a C p manifold, where
k, p ≥ 0. A morphism between X and Y is a map f :
X → Y such that each point p ∈ X admits a coordinate
representation

fU ,V ∈C min(p,k)(Û ,V̂ ) (10)

If min(p,k) ≥ 1, then we define its differential as in
Def. 1.21 by treating both X and Y as C min(k,p) man-
ifolds.

1.4. Tangent spaces

In this section, all manifolds will be of class C p for p ≥ 1.
The next question that we will address is taking derivatives
of smooth maps between manifolds. There is no reason to
demand C p smoothness between maps, or even a C p cat-
egory of manifolds if we cannot borrow something more
other than the morphisms on open sets.

Suppose U is an open subset of E and f : U → Y is C p . The
derivative D f (x) is a linear map E → F , not from U to F
(U might not even be a vector space). This suggests the
’derivative’ of a morphism F : X → Y between manifolds
can in some sense be interpreted as the ordinary derivative
of its coordinate representation DFU ,V (p̂), adhering to our
principle of using open sets.

But there is a problem with this ’derivative’: it gives differ-
ent values for different charts. With infinitely many charts
in X and Y , this definition becomes useless. To see this, let
X be a manifold modelled on E and p ∈ X . If f : X → Y is a
morphism, and (U1,φ1), (U2,φ2) are charts defined about
p such that the representations fU1,V and fU2,V are mor-
phisms. Writing pi =φi (p), U12 =U1 ∩U2 and

φ12 =φ2φ
−1
1 : φ1(U12) →φ2(U12) (11)

(because the map in Eq. (11) goes from the domain U1 to
U2), a simple computation yields Eq. (12).

D fU1,V (p1)(v) = D(ψ f φ−1
2 φ2φ

−1
1 )(p1)(v)

= D fU2,V (p2)
(
Dφ12(p1)(v)

)
= D fU2,V (p2)◦Dφ12(p1) · (v) (12)

where ·(v) denotes the evaluation at v ∈ E , and is assumed
to be left associative over composition. The computation

in Eq. (12) suggests that interpreting the derivative by pre-
conjugation is dependent on the chart being used to inter-
pret the derivative. In fact, Dφ12(p1) can be replaced with
any toplinear isomorphism on E (relabel φ2 = Aφ1 where
A is any linear automorphism on E), so the right hand side
of Eq. (12) can be interpreted as D fU2,V (p2)(w) where w is
any vector in E .

Definition 1.18 Concrete tangent vector

Suppose k ≥ 1, X a C k -manifold on E , and p ∈ X . If
(U ,φ) is any chart containing p, for each v ∈ E we call
(U ,φ, p, v) a concrete tangent vector at p that is inter-
preted with respect to the chart (U ,φ). The disjoint
union of concrete tangent vectors, as shown in Eq. (13)

T(U ,φ,p)X = ⋃
v∈E

{(U ,φ, p, v)} ∼= E , (13)

is called the concrete tangent space at p interpreted
with respect to (U ,φ); and it inherits a TVS structure
from E .

Fix a point p in a manifold X . Suppose (Ui ,φi ) are charts
containing p, from Eq. (12) there exists a natural (toplin-
ear) isomorphism between the concrete tangent spaces,
namely

(U1,φ1, p, v1) ∼ (U2,φ2, p, v2) iff v2 = Dφ12(p1)(v1),
(14)

where pi = φi (p). The right member of Eq. (14) is the
derivative of a transition map — which is a toplinear auto-
morphism on E . Hence Dφ12(p1) defines a toplinear iso-
morphism between T(U1,φ1,p)X and T(U2,φ2,p)X . With this,
we define the primary object of our study.

Definition 1.19 Tangent vector

A tangent vector (or an abstract tangent vector) at p
is defined as an equivalence class of concrete tangent
vectors at p, under the relation in Eq. (14).

Definition 1.20 Tangent space

The tangent space at p, denoted by Tp X is the set of all
tangent vectors at p. It is toplinearly isomorphic to the
model space E .

Definition 1.21 Differential of a morphism

Let X and Y be modelled on the spaces E and F . If f be
a morphism between X and Y , and fix p ∈ X . We de-
fine a linear map, called the differential of f at p shown
in Eq. (15).

d f (p) : Tp X → T f (p)Y (15)

Whose action on tangent vectors is characterized by
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• if (U ,φ) and (V ,ψ) are any pair of charts that sat-
isfy the morphism condition in Eq. (6) about p,
and suppose

• v ∈ Tp M is represented by
(
U ,φ, p, v̂

)
• then d f (p)(v) ∈ T f (p)Y is represented by(

V ,ψ, f (p),D fU ,V (p̂)(v̂)
)

Alternatively, the diagram shown in fig. 1 commutes.
We also write d fp = d f (p).

Tp X T(U ,φ,p)X

T f (p)Y T(V ,ψ, f (p))Y

D fU ,V (p̂)d f (p)

Figure 1: Differential of a morphism

1.5. Velocities

In the previous section, we motivated the definition of Tp X
using the computation of the derivative of a morphism
from X . Dually, the tangent space allows us compute the
derivatives of morphisms into X in a coordinate indepen-
dent manner.

Definition 1.22 Curve

Let Jε = (−ε,+ε) be an open interval in R containing
the origin. Proposition 1.12 tells us Jε is a manifold. A
morphism γ : Jε → X is called a curve in X , and γ(0) is
called the starting point of γ.

Remark 1.23 Omission of chart in concrete represen-
tation

If p is a point on a manifold X , and v ∈ Tp X is repre-
sented by (U ,φ, p, v̂), we write

(U , v̂) = (p̂, v̂) = v̂ = (U ,φ, p, v̂) (16)

Remark 1.24 Standard representation of tangent vec-
tors

If X is an open subset of E , and p ∈ X , we identify a
tangent vector v ∈ Tp X by its standard representation.
Instead of using a v̂ , we use v .

(X , idX , p, v) = (X , v) = (X , v̂) is a representation of v ∈ Tp X
(17)

Definition 1.25 Velocity of a curve

Let γ be a curve in X and t ∈ Jε. We denote the veloc-
ity of a curve γ at t = t0 by γ′(t0); which is defined in
Eq. (18).

γ′(t0) = [
DγJε,V (t0)(1)

]
(18)

where (Jε, idJε , t0,1) is a concrete tangent vector within
Tt0 Jε.

Equation (18) might seem arbitrary at first, but we must
emphasize that this is the most natural interpretation of a
velocity, encodes much of the geometric information of a
tangent vector. We will revisit this topic when we discuss
exterior differentiation.

Proposition 1.26 Tangent vectors are velocities

Let p be a point on a manifold X . For every tangent
vector v ∈ Tp X , there exists a curve starting at p whose
velocity is v .

Proof. Find a chart (U ) in X where p̂ = 0. Such a chart
exists, because translations and dilations are C p isomor-
phisms. If the tangent vector v has interpretation v̂ in U ,
there exists ε > 0 so small that the range of γ̂, as defined
Eq. (19), lies in Û

γ̂ : Jε → Û where γ̂(t ) =
∫t

0
v̂d t (19)

γ̂ is a curve in Û starting at p̂ with velocity v̂ . Defining γ

as the composition of γ̂ with the chart inverse finishes the
proof. ■

1.6. Splitting

Recall: if W is a vector space and W1, W2 are linear sub-
spaces of V . W2 is the vector space complement of W1

(resp. with the indices reversed) if

W1 +W2 =W, and W1 ∩W2 = 0

We sometimes refer to the vector space complement of W1

as its linear complement.

Definition 1.27 Splitting in E

A linear subspace E1 splits in E if both E1 and its vec-
tor space complement E2 are closed, and the addition
map θ : E1 ×E2 → E given by

θ(x, y) = x + y is a toplinear isomorphism.

Definition 1.28 Splitting in L(E ,F )

A continuous, injective linear map λ ∈ L(E ,F ) splits iff
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its range splits in F .

Every finite dimensional or finite codimensional linear
subspace of E splits. And if E itself is finite dimensional,
then every linear subspace of E splits. An alternative defi-
nition of Def. 1.28 is as follows: an map λ ∈ L(E ,F ) splits iff
there exists a toplinear isomorphism θ : F → F1 ×F2 such
that λ composed with α induces a toplinear isomorphism
from E onto F1 ×0 — which we identify with F1.

If E and F are finite dimensional (so E = Rn and F = Rm

respectively), Def. 1.28 refers to the familiar matrix canon-
ical form in Eq. (20), and Defs. 1.29 and 1.30 can be seen as
infinite-dimensional analogues of Eq. (20).

Ainjective =
[

idm×m

0n−m×m

]
Asurjective =

[
idn×n 0n×m−n

]
(20)

Definition 1.29 Immersion

A morphism f ∈ Mor(X ,Y ) is an immersion at p if
there exists a coordinate representation about fU ,V

such that

D fU ,V (p̂)
is injective and
splits.

(21)

The morphism f is called an immersion if Eq. (21)
holds at every p.

Definition 1.30 Submersion

A morphism f ∈ Mor(X ,Y ) is a submersion at p if
there exists a coordinate representation about fU ,V

such that

D fU ,V (p̂)
is surjective and
its kernel splits.

(22)

The morphism f is called a submersion if Eq. (22)
holds at every p.

Definition 1.31 Embedding

A morphism f ∈ Mor(X ,Y ) is an embedding if it is an
immersion and a homeomorphism onto its range.

Definition 1.32 Toplinear subspace

Let E be a Banach space, a toplinear subspace of E is a
closed linear subspace E1 which splits in E .

1.7. Submanifolds

Before we state the definition of a submanifold, it is impor-
tant to recapitulate the construction of a manifold X .

1. Given a non-empty set X and an atlas modelled on a
space E .

2. The purpose of each chart in the atlas is to borrow
open subsets Û ⊆̊ E . If we single out a single chart,
the construction is entirely topological. It is of little
importance how the individual chart domains U are
mapped onto Û ,

3. Each chart is in bijection with its range, which is an
open subset of E , and

4. the transition maps φαβ =φβφ
−1
α are morphisms be-

tween open subsets of E .

If (U ,φ) ∈ X is a chart whose domain intersects S, the ques-
tion then becomes: Is it possible to modify (U ,φ) so that
it becomes a chart modelled on E1? If we restrict φ onto
U ∩S, its range is still an open subset of E . We can assume
φ(U ∩ S) ⊆ E is constant on the linear complement of E1,
that way φ|U∩S will be a bijection.

The range of the restricted chart is still a subset of E , and
not E1. An easy fix to this would be to require E1 to split
in E (and shrinking U using a basis argument). Let θ be
a toplinear isomorphism between E and E1 ×E2, and we
obtain Eq. (23).

θφ(S ∩U ) = Û1 ×a2 where Û1 ⊆̊ E1 and a2 ∈ E2. (23)

Identifying Û with θ(Û ), and requiring U1×a2 to be in θ(Û ),
we arrive at the following definition.

Definition 1.33 Submanifold

Let X be a manifold, and S a subset of X . We call S a
submanifold of X if

1. there exist split subspaces E1, E2 of E ,

2. for every p ∈ S is contained in (U ,φ) ∈ X — a chart
which also splits:

φ : U → Û ∼= Û1×Û2, where Ûi ⊆̊Ei for i = 2,
(24)

3. and for a such chart, there exists a2 ∈ Û2, that
makes U ∩S behave like a level set:

φ(U ∩S) = Û1 ×a2. (25)

Definition 1.34 Slice chart

We call a chart satisfying Eqs. (24) and (25) a slice chart
of S; and to simplify what follows, we write φi = proji φ

for i = 2 for any slice chart (U ).

Given that proji is a morphism between open subsets of
Banach spaces, φi is again a morphism. In particular, φ1
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is a bijection from U s =U ∩S onto Û1; the latter being an
open subset of E1.

To show S is indeed a manifold it remains to show the col-
lection of charts in Eq. (26) forms a C p atlas modelled E1,
which we will prove in Proposition 1.35

A=
{

(U s ,φs ) = (U s ,φ1), (U ,φ) is a slice chart of S
}

. (26)

Proposition 1.35 Structure of a submanifold

If S is a submanifold of X , Eq. (26) defines a C p atlas
over the space E1. The manifold S has a topology that
coincides with the subspace topology. Furthermore,
the inclusion map ιS : S → X is a morphism and an em-
bedding.

Proof. Each of the charts in Eq. (26) is in bijection with an
open subset of E1. Let (U s

α,φs
α) and (U s

β
,φs

β
) be overlapping

charts in A. Using θ as our toplinear isomorphism from E
onto E1 ×E2 as usual.

• By Eq. (24), (U s
α,φs

α) is induced by a chart (Uα,φα) ∈ X ,

φα : Uα → Ûα ⊆̊E which splits into θ(Ûα) = Û s
α×Û2,α

such that Û s
α ⊆̊ E1 and Û2,α ⊆̊ E2. Similarly for β as

well.

• There exists elements a2 ∈ Û2,α, (resp. b2 ∈ Û2,β)
where

θφα(U s
α) = Û s

α×a2 resp. β.

Note 1.36

Let us define U s
αβ

= U s
α∩U s

β
, we will show Lem. 1.37.

Lemma 1.37

Bothφs
α(U s

αβ
) andφs

β
(U s

αβ
) are open subsets of E1.

Proof of Lem. 1.37. We can factor U s
αβ

= (U s ∩Uα) ∩
Uαβ, and because φα is a bijection, we have φs

α(U s
αβ

) =
proj1θ

(
φα(U s ∩Uα)∩φα(Uαβ)

)
.

θ and proj1 are both open maps, and because W
4=

φα(Uαβ) is open in E : θ(φα(U s ∩Uα)∩W ) splits into
a subset of Û s

α×a2,

proj1θ(φα(U s∩Uα)∩W ) = proj1(Open subset of E1×a2)

which is open in E1. ■
The diagram in fig. 2 provides a summary.

U s
αβ

φα(U s
αβ

) φα(U s
αβ

)1 ×a2 φs
α(U s

αβ
)

U s
αβ

φβ(U s
αβ

) φβ(U s
αβ

)1 ×b2 φs
β

(U s
αβ

)

φα θ

φαβ

θφβ

θφαβθ
−1

proj1

proj1

Figure 2: Overlap of slice charts

Identifying a2 (resp. b2) with the constant function (p 7→
a2) for p ∈U s

α, we get Eq. (27).

φs
α×a2 = θ ◦φα resp. β (27)

Suppressing the restrictions onto domains, the transition
map is given by the composition of maps in Eq. (28).

φs
β◦(φs

α)−1 = proj1θφβφ
−1
α θ−1 proj−1

1 : φs
α(U s

αβ) →φs
β(U s

αβ)
(28)

which is clearly a bijection. It suffices to show Eq. (28) is a
morphism between open subsets of E1. Let a2 : φs

α(U s
αβ

) →
Û2,α, which is the constant function a2 and hence a mor-
phism.

The product (idφs
α(U s

αβ
)×a2) = proj−1

1 is a morphism into

φs
α(U s

αβ
)×Û2,α. The inverse of θ is an open morphism, and

the terms φβφ
−1
α combine into the transition map φαβ in

X (up to a restriction on an open set). Equation (28) then
reads

φs
β ◦ (φs

α)−1 = proj1θφαβθ
−1(idφs

α(U s
αβ

)×a2) (29)

which is a morphism between open subsets. Reversing the
roles of α, β shows that Eq. (28) is an isomorphism. There-
fore the collection of charts in Eq. (26) forms an atlas of S.

Let us use ιS : S → X to represent the inclusion map and
consider a point p ∈ S. It is always possible to identify a
slice chart (U ,φ) within X that contains p = ιS (p) in its
domain. By definition of the atlas on S, this induces a
truncated chart (U s ,φs ).

Observing that ιS (U s ) = ιS (U ∩ S) lies within (U ,φ), the
morphism criteria in Eq. (6) is satisfied. Computing the co-
ordinate representation of ιS , we obtain Eq. (30).

(ιS )U s ,U =φιS (φs )−1 = idÛ1
×a2 (30)

Equation (30) shows that the coordinate representation of
ιS is a local isomorphism. Since the inclusion map is a bi-
jection and continuous, and the coordinate representation
of ι−1

S is simply the inverse Eq. (30); and ι−1
S is a morphism

and therefore continuous. The manifold topology of S co-
incides with its subspace topology.
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At last, the inclusion map ιS has coordinate representa-
tion Eq. (30). Computing its ordinary derivative we obtain
Eq. (31).

D(ιS )U s ,U (p̂) : T(U s ,φs ,p) −→ T(U ,φ,p), (31)

and D(ιS )U s ,U (p̂) = idE1 ×0. Which is a toplinear morphism
between concrete tangent spaces and has a simple repre-
sentation of ’adding zeroes’ (see Def. 1.28) at the end of a
vector v̂ ∈ E1 — which is to say: the differential of ιS is in-
jective and splits in E . Therefore ιS is an embedding. ■

Remark 1.38 Pairs of slice charts

Proposition 1.35 shows every point p ∈ S is in the do-
main of a slice chart in S, and the domain of the chart
in X that induces the slice chart — whose inclusion
map satisfies Eqs. (30) and (31). If p is a point on a sub-
manifold S, we refer to a pair of slice charts containing
p as the pair (U s ,φ1) and (U ,φ) in the structure of S
and X .

Definition 1.39 Exterior tangent space of S

The exterior tangent space of a point p ∈ S is the image
of Tp S under d ιS (p),

T ext
p S = d ιS (p)(Tp S), (32)

which is a toplinear subspace of Tp X .

1.8. Notes and References

Remark 1.40 Not necessarily Hausdorff

The topology generated by Prop. 1.10 is not necessar-
ily Hausdorff, nor second countable. So a manifold
X may not admit partitions of unity, but for our cur-
rent purposes we will work with this general defini-
tion. Because of the uniqueness of the topology, we
sometimes refer to the topology as being part of the
structure of the manifold.

Lee [Lee13, Lemma 1.35] requires the chart domains
separate points, and this leads to a Hausdorff topol-
ogy. For a discussion on inductive systems and final
topologies, see [Conway_2019].
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2. Vector Bundles

2.1. Vector Bundles

Let X be a class C p manifold modelled on a space E , and
F another Banach space. Our goal in this section is to con-
struct the vector bundle of a manifold, which has the fol-
lowing desirable properties.

• The vector bundle W embeds X into itself as a sub-
manifold.

• At each point p ∈ X , we attach a F space structure ex-
clusive to each p akin to the tangent space Tp X .

• W is locally isomorphic to the product space U × F ,
where U ⊆̊ X , and

• a subset of the morphisms A : X →W locally resemble
morphisms U →U ×F .

Definition 2.1 Coproduct of fibers

Suppose for each p, the set Wp is toplinearly isomor-
phic to F at for each p (which implies Wp is a TVS),
then we call Wp an F -fiber at p. The set-theoretic co-
product of all such Wp is called a coproduct of F -fibers
modelled over X , where

W = ∐
p∈X

Wp comes with π : W → X , π−1(p) =Wp ;

(33)
with π being a surjection onto X called the canonical
projection of W .

It turns out the natural way of making W a manifold would
be to steal open sets from both E and F — in this case, sets
of the form Û ×F . We sometimes write Ũ instead of π−1(U )
for brevity, and p̃ in place of π−1(p). The next few defini-
tions should feel familiar.

Definition 2.2 Local trivialisation

Let W be as in Eq. (33). A local trivialisation of W is a
tuple (Ũ ,Φ), such that the diagram in fig. 3 commutes,
and

• U ⊆ X is open in X , and for each p ∈U ,

• Φ|p̃ is in bijection with Wp = F .

Definition 2.3 Compatibility between trivialisations

Let (Ũ ,Φ) and (Ṽ ,Ψ) be local trivialisations of W , they
are called C k -compatible if U ∩V =∅, or both of the
following hold:

• for each p ∈ U ∩V — the restriction of Ψ ◦Φ−1

onto the fiber of p — (Ψ◦Φ−1)|p̃ is a toplinear iso-

morphism, and

• the map θ : U ∩V → L(F,F ) as defined by Eq. (34),
is a C k morphism into the Banach space L(F,F ).

θ(p) = (Ψ◦Φ−1)|p̃ (34)

(equivalently, we can require θ be a C k morphism
into the open submanifold Laut(F )).

Note: we assume that 0 ≤ k ≤ p.

Definition 2.4 Trivialisation covering

Let W be a coproduct of F -fibers over X . A C k trivi-
alisation covering of W is a collection of pairwise C k -
compatible local trivialisations {(Ũα,Φα)} where {Uα}
is an open cover of X .

Definition 2.5 Vector bundle

Let X be a C p manifold over E , and let F be a Banach
space. An F -vector bundle of rank k over X is a coprod-
uct of F -fibers modelled over X equipped with a max-
imal C k trivialisation covering.

Remark 2.6 Maximality of trivialisation covering

One can easily verify the compatibility condition de-
fines an equivalence relation, thus any C k - trivialisa-
tion covering determines a maximal one.

Remark 2.7 Omissions for vector bundles

We say W is a bundle over X when it is unambiguous
to do so.

Ũ U ×F

U

π

Φ

proj1

Figure 3: Local Trivialisation

The above definitions calls for some commentary, our end
goal is to make an arbitrary rank C k vector bundle W a C k

manifold. Open sets will still be our primary topological
data. To ensure that W is as similar to X as possible, the
eventual manifold structure we will put on W will embed
the structure of X into W . We are repeating (essentially)
the same argument as in the submanifold case but with
the roles of X and the submanifold S reversed.
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Suppose we have a structure on W , then X = ⋃
p∈X {p}×0

is a submanifold of the W as E splits in the product space
E ×F . Let us motivate a couple of the requirements above.

Definition 2.2 (1) U is required to be open because W in-
herits part of the topology, and hence the charts in E whose
domain is a subset of U ,
Definition 2.2 (2) The second requirement implies eachΦ

is in bijection with Φ(Ũ ) =U ×F , which is open in E ×F ,
which will allow us to construct bijections with open sub-
sets of the model space E ×F . Furthermore, Eq. (35) below
holds for an arbitrary V ⊆ X .

Φ|π−1(U∩V ) is a bijection onto U ∩V ×F (35)

Definition 2.3 (1) The overlap restricts to a toplinear iso-
morphism on each fiber because, it allows us to quotient
out the effects of the trivialisation transitions, by rehears-
ing the same ’coproduct and quotient’ argument in Defini-
tions 1.18 to 1.20.
Definition 2.3 (2) The requirement that the mapping
Eq. (34) is a morphism, turns out to be necessary for Φαβ

to be a C k isomorphism.

Suppose W is an F -vector bundle over X with the trivi-
alisation covering {(Ũα,Φα)}. For each α, we can cover
Uα using chart domains (Uα

β
,φα

β
) in X — without loss of

generality, we can assume Uα
β
⊆Uα by restricting the chart

domain and relabelling.

Similar to the construction of the induced atlas of a sub-
manifold, given a ’piece’ of the original manifold X — in-
stead of dropping the coordinates that correspond to E2,
we add an F -component to construct a bijection with an
open subset of E ×F . This is shown in Eq. (36)

φ̃α
β : Ũα

β −→ Ûα
β ×F defined by φ̃α

β =
(
φα
β × idF

)
◦Φα|Ũα

β

(36)

Remark 2.8 Hats and wiggles

Here, Ũα
β

should be interpreted as the inverse image of

the open set Uα
β

through π. Similarly, Ûα
β

is the image

of Uα
β

through φα
β

.

The collection of charts A, in Eq. (37) cover W with their
chart domains, and each chart is in bijection with an open
subset of E ×F .

A=
{(

Ũα
β , φ̃α

β

)
, (Ũα,Φα) is in the trivialisation covering of W.

}
(37)

Proposition 2.9 Structure of a vector bundle

Let X be a C p manifold modelled over E . If W is a
C k vector bundle modelled on F over the manifold
X , then W is a C k manifold modelled on the product
space E ×F . Furthermore:

1. The canonical projection π : W → X is a mor-
phism and a submersion.

2. X is C k isomorphic to a submanifold of W

Proof. Suppose we are given two charts in Eq. (37), (Ũα1
β1

),

and (Ũα2
β2

,φ̃α2
β2

). First, prove that φ̃α1
β1

(Ũα1
β1

∩Ũα2
β2

) is open in
E ×F :

φ̃
α1
β1

(Ũα1
β1

∩Ũα2
β2

) =
[

(φα1
β1

× idF )◦Φα1

]
(Ũα1

β1
∩Ũα2

β2
)

=
[

(φα1
β1

× idF )◦Φα1

]
(π−1(Uα1

β1
∩Uα2

β2
))

= (φα1
β1

× idF )
(
(Uα1

β1
∩Uα2

β2
)×F

)
by Eq. (35).

Suppressing restrictions and computing the chart transi-
tions in Eq. (38),

φ̃
α2
β2

(
φ̃
α1
β1

)−1 = (φα2
β2

× idF )◦Φα2Φ
−1
α1

◦
(
(φα1

β1
)−1 × idF

)
. (38)

which is clearly a bijection. And it is not hard to see that
Eq. (38) can be factored into

φ̃
α2
β2

(
φ̃
α1
β1

)−1
(x, v) =

(
φ
α1α2
β1β2

(x),
[
θ ◦ (φα1

β1
)−1

]
(x)(v)

)
. (39)

for any x ∈φ
α1
β1

(Uα1α2
β1β2

) and v ∈ F . From Eq. (39), it should

now be clear why we demand k ≤ p . The mapping in the
second coordinate within Eq. (39) can be reduced to a com-
position with the evaluation map E : Laut(F )×F → F .[

θ ◦ (φα1
β1

)−1
]

(x)(v) = E◦
(
[θ ◦ (φα1

β1
)−1]× idF

)
. (40)

Since E is continuous and bilinear, Eq. (40) and hence
Eq. (38) describes a C k mapping between open subsets of
Banach spaces. It is a morphism, and reversing the roles of
the two charts proves its inverse is again a morphism.

To prove π is a submersion, recall W is the set-theoretic
disjoint union of F -fibers. Every element in W can be rep-
resented by (x, v) ∈ X × F . We will identify elements of
W as elements in X ×F . However, this is not a manifold
isomorphism.

Fix (x, v) ∈ W , it is in the domain of some chart (Ũα
β

,φ̃α
β

).

The π-image of the chart domain is ππ−1(Uα
β

) = Uα
β

be-

cause π is surjective. Using Eq. (36) and the diagram found
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in fig. 3, the coordinate representation of π becomes

π(Ũα
β

,Uα
β

) =φα
β ◦π◦Φ−1

α ◦
(
(φα

β)−1 × idF

)
=φα

β ◦proj1 ◦
(
(φα

β)−1 × idF

)
= proj1(idÛα

β
× idF ) (41)

We can differentiate both sides of Eq. (41) and if we write
Û = Ûα

β
, we obtain Eq. (42).

D proj1(idÛ × idF )(x, v) = proj1 ∈ L(E ×F ;E) ∀x ∈ Û , v ∈ F
(42)

which means π submersion.

Finally, the subset X × 0 ⊆ W is easily shown to be a sub-
manifold of W , and is isomorphic to X by dropping the F
coordinate and retracing the argument we made in con-
structing the structure of W . ■

Remark 2.10 Pair of bundle charts

If X is a manifold and W a vector bundle over X , the
charts realizing the representations of π in Eqs. (41)
and (42) are called bundle charts.

Definition 2.11 Section of a vector bundle

Let W be a bundle over a manifold X . A section of W
is a morphism σ ∈ Mor(X ,W ) such that the diagram
in fig. 4a commutes, which is synonymous with πσ =
idX . A local section of W is a morphism σ : U → W
where U ⊆̊ X is viewed as a submanifold and πσ= idU .
We denote the sections of W by Γ(W ).

Γ(W ) =
{
σ : X →W, σ is a section of W.

}
(43)

The zero section of W is the section σ(p) = 0 ∈ Wp for
every p ∈ X . If σ is a section of W , supp(σ) refers to
the support of σ, and is defined in Eq. (44).

supp(σ) = {p ∈ X , σ(p) 6= 0} (44)

Remark 2.12 Bundle coordinates

Let X and W be as in Def. 2.11, and suppose σ is a sec-
tion on W . Using a pair of bundle charts, (U ) ∈ X and
(Ũ ) ∈W , we define the bundle coordinates of σ

σU ,Ũ = φ̃◦σ◦φ−1 (45)

expanding the induced chart on W within Eq. (45)
reads

σU ,Ũ = (φ× idF )◦Φ◦σ◦φ−1 (46)

Refer to the diagram in fig. 4b. We will always use bun-
dle charts when discussing the coordinate representa-

tion of a section, and we write

σU =σU ,Ũ = σ̂

Sections are precisely the morphisms into W whose
coordinate representation resembles that of a graph:
σ̂ : Û → Û ×F and because of this: we identify σ̂(p̂) =
(p̂, v) with v ∈ F .

W

X

π
σ

(a) Section of a bundle

Ũ U ×F

U Û ×F

Û

π
σ

φ

Φ

proj1
φ̃

σU ,Ũ

(b) Local coordinates of a bundle section

Figure 4: Diagrams for bundle section and its local representation

2.2. Tangent Bundle

Definition 2.13 Tangent bundle

Let X be a C p manifold over E , the tangent bundle is a
E-vector bundle of rank p −1, denoted by T X , and

T X = ∐
x∈X

Tx X .

The construction of the tangent bundle is outlined in
Note 2.14.

Note 2.14 Construction of the Tangent Bundle

Let X be a C p manifold with p ≥ 1, so that the tan-
gent space at every point is defined. If p ∈ (Ui ,φi )
for i = 1,2. Then φ12 is a C p isomorphism between
φ1(U12) and φ2(U12); whose derivative is a C p−1 map
into Laut(E) that encodes the transformation be-
tween the concrete tangent spaces. In the notation
of Eq. (11), this means

x 7→ Dφ12(x) is in C p−1(Û12,Laut(E)).

In fact, the tangent bundle T X
4= ∐

p∈X Tp X is a C p−1

vector bundle (modelled on E) over X . If (U ,φ) is a
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chart in X , it induces a local trivialisation on T X by
taking each tangent vector v ∈ Tp X to its concrete rep-
resentation (p, v̂) ∈ X ×E .

Φ : Ũ →U ×E and Φ(v) = (p, v̂) (47)

where (U ,φ, p, v̂) is a concrete representation of v ∈
Tp X .

Similarly, we have the cotangent bundle which is modelled
on toplienar dual of the tangent spaces of X .

Definition 2.15 Cotangent bundle

Let X be a C p manifold over E , the cotangent bundle is
a E-vector bundle of rank p −1, denoted by T ∗X , and

T ∗X = ∐
x∈X

Tx X ∗,

where Tx X is toplinearly isomorphic to X , and Tx X ∗
its toplinear dual.

2.3. Notes and References

Category Theory

Let X and Ei be Banach spaces for i = 2. We discussed
the difference in the role that a toplinear mapping f ∈
L(E1,E2) plays in pushing points from E1 → E2, and the
role it plays from pushing incoming maps with source X
from L(X ,E1) → L(X ,E2) by composing the incoming map
with itself.

f : E1 → E2 and fc : L(X ,E1) → L(X ,E2) (48)

where the c within fc stands for composition. This is sum-
marized in fig. 5

X E2

E2

λ

fλc ( f )

Figure 5: Functorality through post-composition

The two maps f and fc often thought of as the same, and
we can identify f with two separate actions. Here, it is
not so obvious why we need the concept of functorality,
a closer look at the different roles that the same math-
ematical object can play will surely motivate the above
discussion.

Let Ei be Banach spaces, f ∈C p (E1,E2) and λ ∈ L(E2,E3).

• The derivative of f is a continuous map D f : E1 →
L(E1,E2).

• The derivative of λ (now ’identified with λ ∈
C p (E2,E3)), is continuous constant map from E2 to
L(E2,E3)

D(λ◦ f ) =λ◦D f (x) (49)

but what if we have a multi-linear map whose destination
is E1, and what about symmetric/alternating multi-linear
maps, continuous maps, C p morphisms? Should we let f
take on all of those roles as well? Should we identify f with
its adjoint as well? This is the first of the many problems.

The problem becomes even clearer when we look at maps
between F -fibers. Fix a manifold X and Fi -bundles W i

over X for i = 2. Suppose A : X → W 1 is a section on W 1,
and λ ∈ L(F1,F2).

At each point p ∈ X , our linear mapλ can be identified with
the linear map that acts between the fibers.

λp : W 1
p →W 2

p

which is toplinear hence a morphism. Our main problem
is concerned with the conditions under which the compo-
sition λA — as defined in Eq. (50) — is a morphism.

λA : X →W 2 and (λA)(p) =λp (Ap ) ∈W 2
p (50)

Under what conditions can a morphism take on additional
roles? The mapping λp on each tangent space is a C p

morphism in the manifold sense, and the morphisms that
preserve the C p smoothness of sections are called VB mor-
phisms. Which we will define after some more category
theory.

For the remainder of this section, let C1 and C2 be cate-
gories. We denote the objects of C1 by Ei , and the objects
of C2 by Fi .

Definition 2.16 Functor

A correspondence θ between C1 and C2 is called a
functor — which we denote by θ : C1 â C2 — if all of
the following rules satisfied.

Ob1 θ maps objects in C1 to objects in C2. We write

∀E ∈Ob(C1), Eθ = θ(E) ∈Ob(C2) (51)

Mor1 θ associates morphisms in C1 to morphisms in
C2 that respects Ob1.

∀ f ∈ MorC1 (E1,E2), θ( f ) ∈ MorC2 (Eθ
1 ,Eθ

2 ) (52)

Mor2 Identity is associated with identity: θ(idE ) =
θ(idθ(E)).
Mor3 Commutes with inversion: θ( f −1) = θ( f )−1 if
the inverse of f exists.
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Mor4 Functoral: θ(g ◦ f ) = θ(g )◦θ( f ).

Note 2.17 The HomX functor

We continue our discussion from fig. 5. Recall BanR is
the category of Banach spaces over R, and we will re-
fer to toplinear morphisms as morphisms for brevity.
If X is an object in BanR, the HomX functor is a covari-
ant functor between BanR and L(X , ·) — the space of
toplinear mappings with source X such that

1. to each Ei ∈ Ob(BanR) HomX (Ei ) = L(X ,Ei ) —
the space of incoming morphisms with source
X , and

2. to each morphism f ∈ L(E1,E2) another mor-
phism between L(X ,E1) and L(X ,E2) — denoted
by (HomX ) f .

3. The functor HomX converts outgoing mor-
phisms from E1 to the redirection morphism of
incoming morphisms with source X .

Notice this is precisely what the diagram in fig. 5 de-
scribes.

Proposition 2.18 HomX functor is a functor

The HomX functor as defined in Note 2.17 is a covari-
ant functor.

Proof. Postponed. ■

Note 2.19 The tangent space functor

Let X be a C 1 manifold, we call the tuple (p, X ) for
p ∈ X the centering of X centered at p. The category
of pointed manifolds, denoted by Man∗. Its objects
consist of all centerings across C 1 manifolds, and the
morphisms in Man∗ are called pointed morphisms.

If (q,Y ) is another object in Man∗, a pointed mor-
phism between (p, X ) and (q,Y ) is a tuple (p, f );
where f is a manifold morphism between X and Y
and f (p) = q . We sometimes write fp = (p, f ) when it
is clear.

The tangent space functor, denoted by T : Man∗ â
BanR is a covariant functor where

• we define T (p, X ) = Tp X that takes a pointed C 1

manifold to its tangent space, and

• to each pointed C 1 morphism fp ∈
MorMan∗ ((p, X ) (q,Y )) we associate with the

toplinear mapping

T fp = d f (p) : Tp X → Tq Y (53)

Proposition 2.20 Tangent space functor is a functor

The tangent space functor as defined in Note 2.19 is a
covariant functor.

Proof. Postponed. ■
We leave the verification that T satisfies the properties in
Def. 2.16 as an exercise. Dual to the concept of a functor is
that of the cofunctor, which — for our purposes — captures
the idea of the toplinear adjoint.

Definition 2.21 Cofunctor

Let C1 and C2 be categories. A correspondence η :
C1 ⇆C2 is called a cofunctor (or a contravariant func-
tor) if all of the following rules are satisfied.

Ob η maps objects in C1 to objects in C2. We write
Eλ =λ(E) ∈ Ob(C2) for every E ∈ Ob(C1).
Mor1 η associates morphisms in C1 to morphisms in
C2 that respects Ob1.

∀ f ∈ MorC1 (E1,E2), η( f ) ∈ MorC2 (Eη
2 ,Eη

1 ) (54)

Mor2 Identity is associated with identity: η(idE ) =
η(idη(E)).
Mor3 Commutes with inversion: η( f −1) = η( f )−1 if
the inverse of f exists.
Mor4 Cofunctoral: η(g ◦ f ) = η( f )◦η(g ).

Remark 2.22 Cofunctors are opposite to functors

The cofunctor η reverses the arrows a morphism f .
Refer to fig. 6 for a comparison between Eq. (54) and
Eq. (52).

Note 2.23 The HomX cofunctor

Let X ∈ Ob(BanR), it defines a cofunctor from BanR ⇆
L(·, X ) where L(·, X ) is the space of toplinear mappings
whose destination is X .

1. to each Ei ∈ Ob(BanR) HomX (Ei ) = L(Ei , X ) —
the space of outgoing morphisms with destina-
tion X , and

2. to each morphism f ∈ L(E1,E2) another mor-
phism between L(E1, X ) and L(E2, X ) — denoted
by (HomX ) f .

3. The functor HomX converts outgoing mor-
phisms from E1 to the precomposition mor-
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phism which acts on morphisms with destina-
tion X .

η(E1) E1 θ(E1)

η(E2) E2 θ(E2)

f

θ

θ

θ( f )

η

η

η( f )

Figure 6: Functor θ vs. cofunctor η comparison

3. Coordinates

3.1. Introduction

In the previous chapters, a chart (U ,φ) was often equated
with its domain. We will now express a concrete tangent
vector as (p̂, v̂), omitting any reference to the chart or its
domain.
Let X be a manifold and F a Banach space. Consider a
morphism f ∈ Mor(X ,F ) and fix a point p ∈ X , and write
q = f (p). By adopting the canonical interpretation w for a
tangent vector w ∈ Tq F (as discussed in Rmk 1.23), we

• reinterpret the differential at p d fp as a linear map
from Tp X to F ,

• always use the standard chart (idF ,F ) so that f̂ = fU ,F .

In this context, morphisms into R almost serve as test func-
tions in the framework of distribution theory. This requires
a definition.

Definition 3.1 Function on X

Let X be a manifold of class C p over Rn for n, p ≥ 1.
A function on X is a morphism f : X → R, where R

should be interpreted as a manifold. We denote the
commutative ring of functions on X by C p (X ,R) or
C p (X ). If U is an open subset of X , its functions are
denoted by C p (U ,R) or C p (U ).

3.2. Exterior Derivative

Let X be a manifold, and f ∈ C p (X ). If γ : (−δ,+δ) → X is
a curve starting at x0 ∈ X with velocity v , the composition
f ◦γ is a morphism. Let us write

F : (−δ,+δ) →R, F (ε) = f ◦γ(ε)− f ◦γ(0) (55)

Suppose we wish to measure the rate at which f moves in
the direction of v , then we can simply take the derivative

of Eq. (55). We define the exterior derivative of f at x0, de-
noted by d f (x0) : Tx0 X →R by Eq. (56)

d f (x0)(v) = DF (0)(1) where F = f ◦γ (56)

for any curve starting at x0 with velocity v .

Let E be a Banach space, and suppose ω is a k-form on E ,
and x0 ∈ E with k +1 tangent vectors vk+1. The parallelop-
iped defined by the k +1 vectors is

Px0 (vk+1) =
{

x0 +
∑

i=k+1
ti vi , 0 ≤ ti ≤ 1∀i = k +1

}
As with Eq. (55), we can integrate over the boundary de-
fined by Px0 (vk+1), and obtain a new function. We can
shrink each vi by εi , and we define

P
εk+1
x0

(vk+1) =
{

x0 +
∑

i=k+1
ti vi , 0 ≤ ti ≤ εi ∀i = k +1

}
(57)

(Note: Perhaps after shrinking the domain of F , here we
should replace everything by their coordinate representa-
tions).

F : (−δ,+δ)k+1 →R, F (εk+1) =
∫
∂P

εk+1
x0

(vk+1)
ω (58)

We define the exterior derivative of a k-form by the map
DF (0)(1(k+1)).

3.3. Derivations

For the rest of this chapter, assume all manifolds to be C∞
manifolds over Rn .

Definition 3.2 Algebra of germs

Let X be a manifold, and p ∈ X . A germ at p is an
equivalence class of smooth functions, under the re-
lation f ∼ g iff f = g on some neighbourhood of p.
The algebra of germs a p is denoted by C∞

p (X ), under
pointwise multiplication.

Definition 3.3 Derivation at a point

A derivation at a point p is a linear functional ν ∈
C∞

p (X )∗ on the space of germs, that satisfies the prod-
uct rule:

ν(m( fk )) = ∑
i=k

m( fi−1(p),ν fi−1, fi+k−i ),

where m denotes pointwise multiplication. The set of
derivations at p is denoted by Dp X .

We turn to the case in Rn . Let Û be an open subset of Rn ,
and p̂ ∈ Û . To every smooth function f̂ ∈ C∞(U ,R), and
v̂ ∈ Tp̂Û =Rn , we define

〈v̂, f̂ 〉Tp̂Û = D f̂ (p̂)(v̂).
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We remark that the right member can be computed using
〈v̂,grad f̂ (p̂)〉Rn . Furthermore, f̂ = ĝ on some neighbour-
hood about p̂, iff 〈v̂, f̂ − ĝ 〉Tp̂Û = 0; and the product rule

tells us that 〈v̂, ·〉Tp̂Û is a derivation. On the other hand, the

components of v̂ can be computed by deriving the coordi-
nate functions: 〈v̂,ei 〉Tp̂Û = v̂ i .

Proposition 3.4

Let X be a manifold and p ∈ X . To every tangent vector
v ∈ Tp X , and f ∈C∞

p (X ),

〈v, f 〉Tp X = D fU ,R(p̂)(v̂)

Let E and F be Banach spaces and U ⊆̊ E , suppose f is a
morphism from U to F . If p is a point in U , D f (p) is of
course a linear map from E to F ; this suggests a natural
pairing D̂ of f with and (p, v) ∈U ×E as shown in Eq. (59).

D̂ : (U ×E)×C k (U ,F ) −→ F :
(
(p, v), f

)
7→ D f (p)(v) ∈ F

(59)
Suppose F = R and denote pointwise multiplication on R

by m. The above pairing trivially satisfies the product rule
displayed in Eq. (60).

Dm( fk )(p)(v) = ∑
i=k

m( fi−1(p),D fi (p)(v), fi+k−i (p)) (60)

where fk ∈ C p (U ,R). Next, if f is a function (from a man-
ifold X ) defined on an open neighbourhood U of p. If v ∈
Tp X , the commentary in the introduction suggests a ’dual-
ity pairing’ between f and (p, v) in the form of Eq. (61).

D : (U ×E)×C p (U ,F ) −→ F and D
(
(p, v), f

)
= d fp (v)

(61)
By definition of the differential d fp , the right hand side of
Eq. (61) is representation independent, hence

D((p, v), f ) = D f̂ (p̂)(v̂), where the right member is an ordinary derivative
(62)

for any representation (p̂, v̂), f̂ . We also see that
D((p, v), f ) = D̂((p̂, v̂), f̂ ), which shows functions defined
on U are dual to Tp X for each p ∈ U . We will make this
notion precise when we introduce covectors.

Definition 3.5 Derivation at p

A derivation at p is a linear functional v on C p (U ,R),
where U is any neighbourhood of p; such that for fk ∈
C p (U ), Eq. (63) holds.

v
(
m( fk )

)= ∑
i=k

m( fi−1(x), v( fi ), fi+k−i (x)) (63)

We will denote the space of derivations at p by Dp (X ),
and if v ∈Dp (X ), we say v derives f for any function f
defined about p.

We have shown every tangent vector is a derivation, since
the product rule descends from Eq. (60) and its computa-
tion in coordinates in Eq. (62). If X is finite-dimensional,
Prop. 3.6 shows derivations at a point p ∈ X are uniquely
represented by a tangent vector.

Proposition 3.6

Let p be a point on a manifold X , then its tangent
space is isomorphic to the vector space of derivations.
If (p̂, v̂) is a concrete tangent vector, its derivation of f
computed using Eq. (62).

Proof. Postponed. ■

3.4. Boundary

Definition 3.7 Subsets of the upper half-plane

Let n ≥ 1, the upper half plane of Rn is the subset Hn =
[xn ≥ 0]. Its topological interior (resp. boundary) is
denoted by IntHn = [xn > 0] (resp. ∂Hn = [xn = 0]).

We wish to define a notion of the boundary for a manifold.
Instead of modelling X on open subsets of Rn , we consider
open subsets of both Rn and Hn . To wit, we start by gen-
eralizing the notion of C p smoothness between arbitrary
subsets of Rn . Let S ⊆Rn be a subset of Rn , recall that:

A function f : S → Rm is said to be continuous
on S, if f −1(U ) is relatively open in S for every
U ⊆̊ Rm .

The take-away intuitinon for this is that manifolds with
boundary are supposedly used to model geometric objects
that are suddenly ’cut off’. In the case of the upper half-
plane, this manifests in a sudden stop in the n-th coordi-
nate. The morphisms we seek are the ones which are ordi-
nary morphisms but whose domains ’cut off’.

Let F : S → S′ be a mapping between arbitrary
subsets ofRn andRm . It is a C p morphism, when-
ever each point p ∈ S admits a C p extension to a
neighbourhood containing p.

With this, a C p isomorphism between subsets of Rn is a bi-
jective C p morphism whose inverse is also a C p morphism.

Definition 3.8 Boundary chart

Let X be a non-empty subset. A boundary chart on
X modelled on Rn is a tuple (U ,φ), such that U ⊆ X ,
φ(U ) = Û is an open subset of Hn , and φ is a bijection
onto Û .

To distinguish between this new definition of the previous
one, the word chart will always refer to the charts defined
in Chapter 1. If we wish to be precise, we will use the word
interior chart.
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Definition 3.9 Compatibility between boundary and
interior charts

Let (U ,φ) and (V ,ψ) be boundary or interior charts
of X , modelled on Rn or Hn . They are called C p -
compatible (for p ≥ 0) if U ∩V =∅, or both of the fol-
lowing hold:

• φ(U ∩V ) and ψ(U ∩V ) are both open subsets of
Rn or Hn .

• the transition map ψ◦φ−1 : φ(U ∩V ) →ψ(U ∩V )
is a C p isomorphism between open subsets of Rn

or Hn .

Definition 3.10 Boundary atlas, structure with
boundary

Let X be a non-empty set and p ≥ 0. A C p boundary at-
las on X modelled on Rn is a pairwise C p -compatible
collection of charts {(Uα,φα)} whose union over the
domains cover X .

If A is a boundary atlas of X , the maximal boundary
atlas containing A is called the C p boundary structure
determined by A. A C p manifold with boundary mod-
elled on Rn is a a non-empty set X with a C p boundary
structure modelled on Rn .

We also have the following terminology for points in a
manifold with boundary X . Let p ∈ X ,

• p is called a boundary point whenever it is in the do-
main of a boundary chart (U ,φ), and φ(p) ∈ ∂Hn ,

• p is called an interior point otherwise.

Remark 3.11

It can be shown (using deRham cohomology, see
Chapter 16-17 [Lee13]) that a point on a manifold can-
not be a boundary point and an interior point at the
same time.

References

[Lan12] Serge Lang. Fundamentals of Differential Geom-
etry. Springer Science & Business Media, Dec.
2012.

[Lee13] John M. Lee. Introduction to Smooth Manifolds.
2nd ed. Springer Science & Business Media, Mar.
2013.

Updated 2024-11-13 at 17:11 Page 16


	1 Manifolds
	1.1 Introduction
	1.2 Structure of a manifold
	1.3 Morphisms between manifolds
	1.4 Tangent spaces
	1.5 Velocities
	1.6 Splitting
	1.7 Submanifolds
	1.8 Notes and References

	2 Vector Bundles
	2.1 Vector Bundles
	2.2 Tangent Bundle
	2.3 Notes and References

	3 Coordinates
	3.1 Introduction
	3.2 Exterior Derivative
	3.3 Derivations
	3.4 Boundary


