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1. Manifolds

1.1. Introduction

We serve to give the reader the shortest introduction to
manifold theory. This and the subsequent two chapters are
loosely based on [Lan12; Leel3], and the symbols E, F will
always denote Banach spaces, and all Banach spaces are
assumed to be over R. We sometimes say E (resp. F) is a
space for brevity, and

e L(E,F) =linear maps between E and F,

e L(E,F) = toplinear (continuous and linear) maps be-
tween E and F,

» Topliso(E, F) = toplinear isomorphisms between E
and F,

e Laut(E) = toplinear automorphisms on E, which form
a strongly open subset of L(E, E).

We will be working in the category of CP Banach spaces
— where p = 0. The morphisms in the category of Bang
are called CP morphisms, which are p-times continuously
differentiable functions.

Definition 1.1 Morphisms between open subsets of
Banach spaces

Let E and F be Banach spaces, and U € E, V € F be
open subsets. A mapping f : E — F is of class CP if
f € C(E,F) and Eq. (1) holds.

D(i)f E— Li(E, F) exists and is continuous for i=p
@
CP(E, F) denotes the vector space of C” mappings be-
tween E and F. Sometimes, we restrict our attention
to open subsets of E and F, in this case: f € CP(U, V) if

fe€C(U,V)and Eq. (2) holds.

D(i)f :U— L'(E,F) exists and is continuous for i = )i
@
We sometimes write CP for CP(E, F) when it is clear.
A CP isomorphism is a bijective C” morphism whose

inverse is also a morphism.

Remark 1.2 Implicit assumption

In Eq. (2) we assumed that f(U) < V. This is a non-
trivial part of the definition of C” morphisms between
E and F, we will come back to this in Def. 1.13.

Let f1 and f, be mappings, and X a non-empty set.

e We say they are composable if either one of f> o f; or
fi o f> makes sense.

* We also write f> f to refer to f; o f if there is no ambi-
guity.

eIfUcXandVcY,and f: U — V is a bijection —
meaning f(U) = V and f is injective, we say f is a bi-
jection between U and V.

» With regards to inverse image notation, we allow our-
selves to write

flofi! isthesameas f; ' f;!
and inversion is never left associative.

L =hofit#(hof)!
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Composable CP mappings are functors in the category of
open subsets between Banach spaces. Few basic facts
about CP morphisms:

e If f is a toplinear mapping between E and F, then f €
CP(E,F)forall p=0.

 If f is a bijective toplinear mapping, then it is a C”
isomorphism for all p = 0.

* However, a bijective C” morphism need not be a C”
isomorphism.

1.2. Structure of a manifold

It is fruitful to construct the manifold rather than define it.
We also insist on working with open sets of Banach spaces
instead coordinate functions as our primary data.

Definition 1.3 Chart

Let X be a non-empty set. A chart on X modelled on
a Banach space E is a tuple (U, ¢), such that U ¢ X,
@(U) = U is an open subset of E, and ¢ is a bijection
onto U.

* We often suppress the restrictions of the two charts in
the composition, and Eq. (3) reads

Pap=PpoPa’ = PpPy 4)

Remark 1.6 Omissions of C”

We might refer to two charts as compatible or smoothly
compatible, implying they are CP compatible. This
comes from the perspective that, in the context of C”
manifolds, any smoothness exceeding C? is deemed
sufficiently smooth for our purposes. We also say C”
for CP where p = 0.

Definition 1.7 Structure determined by an atlas

Let A be an atlas on X, the maximal atlas containing
A is called the CP structure determined by A.

Definition 1.8 Manifold

A CP manifold modelled on E is a non-empty set X
with a CP structure modelled on E. We refer to E as
the model space of X.

Definition 1.4 Compatibility

Let (U,) and (V,¥) be charts on X modelled on E,
they are called CP compatible (for p=0)ifUnV =@,
or both of the following hold

e @(UNV)and ¢ (Un V) are both open subsets of
E, and

* the transition map o' :p(UNV)—yw(UnNV)
is a C” isomorphism between open subsets of E.

Definition 1.5 Atlas

Let X be a non-empty set and p = 0. A CP atlas on X
modelled on E is a pairwise C” compatible collection
of charts {(Ug,®4)} whose union over the domains
cover X.

We will assume hereinafter that atlases are of class C? for
p = 0. Let X be a non-empty set, equipped with an atlas
{(Ug, 9q)} modelled on a space E. Suppose «a, and  both
index the atlas.

 We write Uy to refer to ¢4 (Uy), and

* D =@q(p) for p € U, when it is clear which chart we
are using.

* Upp = UgnUg, and if Uyg # &: the transition map

Proposition 1.9 E is a manifold

The identity idr defines an atlas on E, which deter-
mines a CP structure called the standard structure of
E for p = 0. We call (E,idg) the standard chart on E.

Proposition 1.10 Topology is unique on a manifold

Let X be a CP manifold modelled on E, it induces a
unique topology such that the domain for each chart
in its smooth structure is open, and each chart is a
homeomorphism onto its range in the subspace topol-

ogy.

Proof. We offer a sketch of the proof. Fix a chart (U, ¢),
it is clear that U has to be in the topology of X, and be-
cause ¢ : U — U is required to be a homeomorphism, we
duplicate all the open sets in U by using the inverse image
through ¢. The collection of all such inverse images form a
sub-basis, thus defines a unique topology as is well known.

There is an alternate way constructing the above topol-
ogy. The existence of a coarsest topology on a chart do-
main U such that if (V,¢) is another chart whose domain
VU # &, then ¢|ynv is ahomeomorphism onto its range.
Stitching the weak topologies together, we obtain an ambi-

from a to B is defined in Eq. (3). ent topology on X [Lan12]. .
A -1
Pap = Pplugs © (Peluys) PaUap) = 9pUap) B)
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Remark 1.11 Omission of model space

For any of the objects we have defined in this section,
that depend upon a model space or a morphism class
(i.e CP), we will say 'X is a manifold’, rather than X is
a manifold of class CP modelled over E when it is con-
venient to do so. If the model space E is infinite (resp.
finite) dimensional, we say X is infinite (resp. finite)
dimensional. And a reminder: C” should always be
interpreted with p = 0.

Proposition 1.12 Open subsets of manifolds

Let U be an open subset of a manifold X, then U is a
manifold whose structure is determined by the atlas A
in Eq. (5).

A= {(V, @) in the structure of X, where V< U } 5)

Proof. The structure of X includes all possible restrictions
to open sets; hence A in Eq. (5) is an atlas, and a unique
structure by Def. 1.7. |

1.3. Morphisms between manifolds

Definition 1.13 Morphisms between manifolds

A mapping f : X — Y between manifolds is a mor-
phism (a CP morphism to be precise) if for every p € X,
there exist charts (U, ¢) € X and (V,y) € Y such that 1)
the image f(U) is contained in a the chart domain V,
and 2)

fuvEwofopteCP(U,V) inthesense of Def. 1.1.

(6)
The map fy,v as defined in Eq. (6) is called the coor-
dinate representation of f with respect to the charts
W, ¢), (V,y).

Remark 1.14 Identifying X with its structure

If (U, @) is a chart in the structure of X, we will simply
say (U, ¢) isin X.

Remark 1.15 Identifying charts with their domains

The scenario in Eq. (6) occurs so often that we decide
to simply write

fov=vfe @
to mean there exists charts (U, ), (V) in the struc-
ture of X, Y with

faesv 8

Consistent with the notation of putting hats on objects

borrowed or pulled back from the model spaces, we
write f = fy,v. Equation (9) gives an example of this.

£ = fuv® = fuve(p) ©9)

for any morphism f € Mor(X, Y), and charts that sat-
isfy Eq. (8). We refer to the map in Eq. (9) as a coor-
dinate representation of f about p, with the inference
that p e (U, p).

Definition 1.13 may leave one unsatisfied. Why do we re-
quire the image f(U) be contained in another chart do-
main in Y? There are two reasons.

Continuity Suppose f is a map between E and F, and the
restriction of f onto a family of open subsets Uy < E is C”
for p = 0. If {U,} is an open cover for E, then f is contin-
uous. Proposition 1.16 shows this equally holds for mani-
folds.

Implicit assumption The definition of smoothness be-
tween open subsets of Banach spaces (see Def. 1.1) is a
purely local one. And let us recall: every chart domain U
in a manifold X corresponds to an open subset U < E in
the model space, and see Rmk 1.2 as well. Hence, the ne-
cessity that the image f(U) is contained in a single chart
domain of Y is a relic of the original definition. The as-
tute reader will also see that the openness requirement of
w(UnNV),and (U N V) in Def. 1.4 is completely natural as
well, since CP morphisms are defined between open sub-
sets of Banach spaces.

Proposition 1.16 Properties of morphisms between
manifolds

Every C” morphism between manifolds is a contin-

uous map, and the composition of CP morphisms is
again a morphism.

Proof. The first claim is proven if we show f is locally con-
tinuous. Using Equation (6), since p is arbitrary, choose
any neighbourhood W of f(p), by shrinking this neigh-
bourhood, it suffices to assume it is a subset of the chart
domain V. The charts on X and Y are homeomorphisms,
and unwinding the formula shows that f|y = v~ fy v, so
that
Unf'w)=(fly)""(W) isopeninX.

To prove the second, let X3 be manifolds modelled over
E3, and fi, f> is smooth between X; such that f,o fi
makes sense. Since f; is smooth, one finds a pair of
charts (Uj,¢;) € X; for i = 1,2 about each p € X; such
that (f1)y,,u, is a morphism.

f2(fi(p)) induces another pair of charts (V;,y;) € X; for
i =2,3. Since f> is smooth, it is continuous. fl‘1 sz_l(V3)
is open in X, and we can shrink all of our charts so that
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f2 f1(U1) is contained in V3. Finally, because C” morphisms
between open subsets of Banach spaces is closed under
composition, fi, -1 ¢-1ys) v, is smooth. u

Remark 1.17 Morphisms between C¥, C” manifolds

Let X be a C¥-manifold, and Y a C” manifold, where
k,p = 0. A morphism between X and Y isamap f:
X — Y such that each point p € X admits a coordinate
representation

fu,v € CnPR (@ 7 (10)

If min(p, k) = 1, then we define its differential as in
Def. 1.21 by treating both X and Y as C™»%P) man-
ifolds.

1.4. Tangent spaces

In this section, all manifolds will be of class C? for p = 1.
The next question that we will address is taking derivatives
of smooth maps between manifolds. There is no reason to
demand CP smoothness between maps, or even a C? cat-
egory of manifolds if we cannot borrow something more
other than the morphisms on open sets.

Suppose U is an open subset of E and f: U — Y is C”. The
derivative D f(x) is a linear map E — F, not from U to F
(U might not even be a vector space). This suggests the
‘derivative’ of a morphism F : X — Y between manifolds
can in some sense be interpreted as the ordinary derivative
of its coordinate representation DFy, v (p), adhering to our
principle of using open sets.

But there is a problem with this ‘derivative’: it gives differ-
ent values for different charts. With infinitely many charts
in X and Y, this definition becomes useless. To see this, let
X be amanifold modelledon Eand pe X. If f: X — Yisa
morphism, and (Uy, ¢1), (U, @2) are charts defined about
p such that the representations fy, v and fy, v are mor-
phisms. Writing p; = ¢;(p), Ui2 = Uy n U, and

P12 = (Pz(Pfl 11 (Un2) — 2 (Ur2) (11)

(because the map in Eq. (11) goes from the domain U; to
U,), a simple computation yields Eq. (12).

D fu, v(p1) () = Dy fo5 2007 (p1) (v)
= D fup,v (p2) (D12 (p1) v)
=D fu,,v(p2) o Dp12(p1) - (v) (12)

where -(v) denotes the evaluation at v € E, and is assumed
to be left associative over composition. The computation

in Eq. (12) suggests that interpreting the derivative by pre-
conjugation is dependent on the chart being used to inter-
pret the derivative. In fact, Dg;2(p;) can be replaced with
any toplinear isomorphism on E (relabel ¢, = Ap; where
Ais any linear automorphism on E), so the right hand side
of Eq. (12) can be interpreted as D f7,,v (p2) (w) where w is
any vector in E.

Definition 1.18 Concrete tangent vector

Suppose k = 1, X a C*-manifold on E, and p € X. If
(U, ¢) is any chart containing p, for each v € E we call
(U, o, p,v) a concrete tangent vector at p that is inter-
preted with respect to the chart (U,¢). The disjoint
union of concrete tangent vectors, as shown in Eq. (13)
TwuepX=UI{U e p v} ZE, (13)
veE
is called the concrete tangent space at p interpreted
with respect to (U, ¢); and it inherits a TVS structure
from E.

Fix a point p in a manifold X. Suppose (Uj, ¢;) are charts
containing p, from Eq. (12) there exists a natural (toplin-
ear) isomorphism between the concrete tangent spaces,
namely

iff vo =De¢i12(p1)(v1),

(14)
where p; = @;(p). The right member of Eq. (14) is the
derivative of a transition map — which is a toplinear auto-
morphism on E. Hence D¢1,(p;) defines a toplinear iso-
morphism between Ty, ,p,,» X and T(y,,¢,,p» X. With this,
we define the primary object of our study.

(Ulr(ply pr vl) ~ (UZr(p27 pr UZ)

Definition 1.19 Tangent vector

A tangent vector (or an abstract tangent vector) at p
is defined as an equivalence class of concrete tangent
vectors at p, under the relation in Eq. (14).

Definition 1.20 Tangent space

The tangent space at p, denoted by T), X is the set of all
tangent vectors at p. It is toplinearly isomorphic to the
model space E.

Definition 1.21 Differential of a morphism

Let X and Y be modelled on the spaces E and F. If f be
a morphism between X and Y, and fix p € X. We de-
fine alinear map, called the differential of f at p shown
in Eq. (15).

df(p): TpX — Tppn Y (15)

Whose action on tangent vectors is characterized by
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e if (U, ) and (V,y) are any pair of charts that sat-
isfy the morphism condition in Eq. (6) about p,
and suppose

* ve Ty M is represented by (U, ®,p, 17)

e then df(p)(v) € TrpmY s represented by
(Vow, £ o), Dfuv () (9)

Alternatively, the diagram shown in fig. 1 commutes.
We also write d f, = d f (p).

TpX ——— TuppX
| |

df(p) Dfy,v(p)
1 1
Trp)Y — Twy,ronY

Figure 1: Differential of a morphism

1.5. Velocities

In the previous section, we motivated the definition of T, X
using the computation of the derivative of a morphism
from X. Dually, the tangent space allows us compute the
derivatives of morphisms into X in a coordinate indepen-
dent manner.

Definition 1.22 Curve

Let J; = (—¢,+¢) be an open interval in R containing
the origin. Proposition 1.12 tells us J, is a manifold. A
morphism y : J; — X is called a curve in X, and y(0) is
called the starting point of y.

Remark 1.23 Omission of chart in concrete represen-
tation

If p is a point on a manifold X, and v € T, X is repre-
sented by (U, ¢, p, ), we write

U, 0)=/p0)=0=U,e,p,0) (16)

Remark 1.24 Standard representation of tangent vec-
tors

If X is an open subset of E, and p € X, we identify a
tangent vector v € T, X by its standard representation.
Instead of using a D, we use 7.

(X,idx, p,7) =(X,7) = (X, D) isarepresentationof ve

a7

Definition 1.25 Velocity of a curve

Let y be a curve in X and t € J.. We denote the veloc-
ity of a curve y at t = to by y/(fo); which is defined in
Eq. (18).

Y (to) = [Dy g, v (t) (D] (18)
where (J;,idy,, fo, 1) is a concrete tangent vector within
Tfo ]E-

Equation (18) might seem arbitrary at first, but we must
emphasize that this is the most natural interpretation of a
velocity, encodes much of the geometric information of a
tangent vector. We will revisit this topic when we discuss
exterior differentiation.

Proposition 1.26 Tangent vectors are velocities

Let p be a point on a manifold X. For every tangent
vector v € Tj, X, there exists a curve starting at p whose
velocity is v.

Proof. Find a chart (U) in X where p = 0. Such a chart

exists, because translations and dilations are CP isomor-

phisms. If the tangent vector v has interpretation 9 in U,

there exists € > 0 so small that the range of 7, as defined

Eq. (19), liesin U

t
bdt

7:Je— U where (1) =f (19)

0
f is a curve in U starting at p with velocity #. Defining y
as the composition of ¥ with the chart inverse finishes the
proof. |

1.6. Splitting

Recall: if W is a vector space and Wj, W, are linear sub-
spaces of V. W, is the vector space complement of W;
(resp. with the indices reversed) if

Wi+Wo=W, and WinW,=0

We sometimes refer to the vector space complement of W
as its linear complement.

Definition 1.27 Splitting in E

A linear subspace E; splits in E if both E; and its vec-
tor space complement E» are closed, and the addition
map 0 : E; x E; — E given by

O(x,y)=x+y isatoplinear isomorphism.

Definition 1.28 Splitting in L(E, F)

A continuous, injective linear map A € L(E, F) splits iff

Updated 2024-11-13 at 17:11
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its range splits in F.

Every finite dimensional or finite codimensional linear
subspace of E splits. And if E itself is finite dimensional,
then every linear subspace of E splits. An alternative defi-
nition of Def. 1.28 is as follows: an map A € L(E, F) splits iff
there exists a toplinear isomorphism 6 : F — F; x F, such
that 1 composed with @ induces a toplinear isomorphism
from E onto F; x 0 — which we identify with F;.

If E and F are finite dimensional (so E = R" and F = R™
respectively), Def. 1.28 refers to the familiar matrix canon-
ical form in Eq. (20), and Defs. 1.29 and 1.30 can be seen as
infinite-dimensional analogues of Eq. (20).

idyxm .
Asurjective = [ldnxn Onxm—n]

(20

Ainjective = [0
n—-mxm

Definition 1.29 Immersion
A morphism f € Mor(X,Y) is an immersion at p if
there exists a coordinate representation about fy,v
such that

is injective and

splits. 1)

Dfy,v(p)

The morphism f is called an immersion if Eq. (21)
holds at every p.

Definition 1.30 Submersion
A morphism f € Mor(X,Y) is a submersion at p if
there exists a coordinate representation about fy v
such that

is surjective and

its kernel splits. (22)

Dfuy,v(p)

The morphism f is called a submersion if Eq. (22)
holds at every p.

Definition 1.31 Embedding

A morphism f € Mor(X,Y) is an embedding if it is an
immersion and a homeomorphism onto its range.

Definition 1.32 Toplinear subspace

Let E be a Banach space, a toplinear subspace of E is a
closed linear subspace E; which splits in E.

1.7. Submanifolds

Before we state the definition of a submanifold, it is impor-
tant to recapitulate the construction of a manifold X.

1. Given a non-empty set X and an atlas modelled on a
space E.

2. The purpose of each chart in the atlas is to borrow
open subsets U & E. If we single out a single chart,
the construction is entirely topological. It is of little
importance how the individual chart domains U are
mapped onto U,

3. Each chart is in bijection with its range, which is an
open subset of E, and

4. the transition maps @qp = (pﬁ(p;I are morphisms be-
tween open subsets of E.

If (U, ) € X is a chart whose domain intersects S, the ques-
tion then becomes: Is it possible to modify (U, ¢) so that
it becomes a chart modelled on E;? If we restrict ¢ onto
U n S, its range is still an open subset of E. We can assume
¢(U N S) € E is constant on the linear complement of Ej,
that way ¢|yns will be a bijection.

The range of the restricted chart is still a subset of E, and
not E;. An easy fix to this would be to require E; to split
in E (and shrinking U using a basis argument). Let 6 be
a toplinear isomorphism between E and E; x E», and we
obtain Eq. (23).

0p(SNU)=U, xa, where U, £Ejanday€E,. (23)

Identifying U with 6(U), and requiring Uj x a to be in 8(U),
we arrive at the following definition.

Definition 1.33 Submanifold

Let X be a manifold, and S a subset of X. We call S a
submanifold of X if

1. there exist split subspaces Ej, E» of E,
2. forevery p € Sis containedin (U, ¢) € X —achart
which also splits:

@:U—U=U,xU,, where U;<E; for i=2,
(24)
3. and for a such chart, there exists ay € Us, that

makes U N S behave like a level set:

PUNS) =U; x ay. (25)

Definition 1.34 Slice chart

We call a chart satisfying Egs. (24) and (25) a slice chart
of §; and to simplify what follows, we write ¢* = proj; ¢
for i = 2 for any slice chart (U).

Given that proj; is a morphism between open subsets of
Banach spaces, ¢’ is again a morphism. In particular, ¢!
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is a bijection from U* = U N S onto Uy; the latter being an
open subset of E;.

To show S is indeed a manifold it remains to show the col-

lection of charts in Eq. (26) forms a CP atlas modelled Ej,
which we will prove in Proposition 1.35

A= {(Us,(ps) = (US,¢Y), (U, ) is aslice chart of S}. (26)

Proposition 1.35 Structure of a submanifold

If S is a submanifold of X, Eq. (26) defines a C” atlas
over the space E;. The manifold S has a topology that
coincides with the subspace topology. Furthermore,
the inclusion map ts: S — X is amorphism and an em-
bedding.

Proof. Each of the charts in Eq. (26) is in bijection with an
opensubset of E;. Let (U}, ¢3) and (U3, (p;) be overlapping
charts in A. Using @ as our toplinear isomorphism from E
onto E; x E; as usual.

* ByEq. (24), (U, ¢$) isinduced by a chart (Uy, ¢4) € X,
¢a:Uy— Uy £E whichsplitsinto  0(Uy) = UxUs g

such that US € E; and U, 4 & E,. Similarly for B as
well.

o There exists elements a, € U q, (tesp. by € Usp)

where
0o (U =US xay, resp. f.
Note 1.36
Let us define U? , = Uy n U, we will show Lem. 1.37.

ap B’

Lemma 1.37
Both ¢}, (U;ﬁ) and <pf3 (Uéﬁ) are open subsets of Ej.

Proof of Lem. 1.37. We can factor Uéﬁ = USNnUy) N
Uy, p, and because ¢, is a bijection, we have ¢, (Uéﬁ) =

projle((pa(Usn Ua) ﬁ(pa(Uaﬁ)).
0 and proj, are both open maps, and because W 2

@a(Ugp) is open in E: 0(@q(U* N Uy) N W) splits into
a subset of US x ay,

proj, 0(¢q(U°nU)NW) = proj, (Open subset of E; x az)

which is open in Ej. ]

The diagram in fig. 2 provides a summary.

U,

Pap 9(pa,39_1

0 T

Uéﬁ — ¥ —> (Pﬁ(U;ﬁ) — 00— (Pﬁ(U;ﬁ)l x by — proj, — (p,SB(U;;

Figure 2: Overlap of slice charts

Identifying a, (resp. b,) with the constant function (p —
ap) for p e Uy, we get Eq. (27).

@y xaz=00¢, resp.f 27)

Suppressing the restrictions onto domains, the transition
map is given by the composition of maps in Eq. (28).

@ho (@3) ™" = proj; 0psp;' 0" proj;! 0o Uyp) = pp(Upgp)

(28)
which is clearly a bijection. It suffices to show Eq. (28) is a
morphism between open subsets of E;. Let ay : (p”;(U;ﬁ) -

Uz,a, which is the constant function a, and hence a mor-
phism.

The product (idy;, WS Xdp) = projl‘1 is a morphism into
(p;(U;ﬁ) x Uy, 4. The inverse of § is an open morphism, and

the terms (pﬁq);l combine into the transition map @.g in
X (up to arestriction on an open set). Equation (28) then
reads

(p% o (p3)™" = proj, 0pep0 " (idwg,(ugﬁ) xa)  (29)
which is a morphism between open subsets. Reversing the
roles of &, 3 shows that Eq. (28) is an isomorphism. There-
fore the collection of charts in Eq. (26) forms an atlas of S.

Let us use 15 : S — X to represent the inclusion map and
consider a point p € S. It is always possible to identify a
slice chart (U, ) within X that contains p = ts(p) in its
domain. By definition of the atlas on S, this induces a
truncated chart (U*, ¢°%).

Observing that 15(U*®) = 15(U N S) lies within (U, ¢), the
morphism criteria in Eq. (6) is satisfied. Computing the co-
ordinate representation of tg, we obtain Eq. (30).

US)US,U = (pts((ps)_l = ld[jl X do (30)

Equation (30) shows that the coordinate representation of
ts is a local isomorphism. Since the inclusion map is a bi-
jection and continuous, and the coordinate representation
of tgl is simply the inverse Eq. (30); and Lgl is a morphism
and therefore continuous. The manifold topology of S co-
incides with its subspace topology.
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At last, the inclusion map ts has coordinate representa-
tion Eq. (30). Computing its ordinary derivative we obtain
Eq. (31).

Dus)us,u(P): Tws,ps,p) — Tw,e,p)» (31

and D(ts)ys,u(p) = idg, x0. Which is a toplinear morphism
between concrete tangent spaces and has a simple repre-
sentation of ’adding zeroes’ (see Def. 1.28) at the end of a
vector D € E; — which is to say: the differential of ¢ is in-
jective and splits in E. Therefore 15 is an embedding. W

Remark 1.38 Pairs of slice charts

Proposition 1.35 shows every point p € S is in the do-
main of a slice chart in S, and the domain of the chart
in X that induces the slice chart — whose inclusion
map satisfies Egs. (30) and (31). If p is a point on a sub-
manifold S, we refer to a pair of slice charts containing
p as the pair (Us,(pl) and (U, ) in the structure of S
and X.

Definition 1.39 Exterior tangent space of S

The exterior tangent space of a point p € S is the image
of T, S under dis(p),

TS = dis(p)(TpS), (32)

which is a toplinear subspace of T, X.

1.8. Notes and References

Remark 1.40 Not necessarily Hausdorff

The topology generated by Prop. 1.10 is not necessar-
ily Hausdorff, nor second countable. So a manifold
X may not admit partitions of unity, but for our cur-
rent purposes we will work with this general defini-
tion. Because of the uniqueness of the topology, we
sometimes refer to the topology as being part of the
structure of the manifold.

Lee [Leel3, Lemma 1.35] requires the chart domains
separate points, and this leads to a Hausdorff topol-
ogy. For a discussion on inductive systems and final
topologies, see [Conway_2019].
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2. Vector Bundles

2.1. Vector Bundles

Let X be a class CP manifold modelled on a space E, and
F another Banach space. Our goal in this section is to con-
struct the vector bundle of a manifold, which has the fol-
lowing desirable properties.

¢ The vector bundle W embeds X into itself as a sub-
manifold.

* At each point p € X, we attach a F space structure ex-
clusive to each p akin to the tangent space T, X.

e W is locally isomorphic to the product space U x F,
where U € X, and

* asubset of the morphisms A: X — W locally resemble
morphisms U — U x F.

Definition 2.1 Coproduct of fibers

Suppose for each p, the set W), is toplinearly isomor-
phic to F at for each p (which implies W), is a TVS),
then we call W), an F-fiber at p. The set-theoretic co-
product of all such W), is called a coproduct of F-fibers
modelled over X, where
W= ]_[ Wy, comeswith 7:W — X, ﬂ_l(p) =Wp;
peX

(33)
with 7 being a surjection onto X called the canonical
projection of W.

It turns out the natural way of making W a manifold would
be to steal open sets from both E and F — in this case, sets
of the form U x F. We sometimes write U instead of 7~ (U)
for brevity, and 7 in place of 77! (p). The next few defini-
tions should feel familiar.

Definition 2.2 Local trivialisation

Let W be as in Eq. (33). A local trivialisation of W is a
tuple (U, @), such that the diagram in fig. 3 commutes,
and

e Jc Xisopenin X, and foreach pe U,

* ®|y is in bijection with W, = F.

Definition 2.3 Compatibility between trivialisations

Let (U, ®) and (V, ¥) be local trivialisations of W, they
are called Ck-compatible if UnV = @, or both of the
following hold:

« for each p € Un V — the restriction of ¥ o ®~!
onto the fiber of p — (‘PoCIJ‘l)Ig is a toplinear iso-

morphism, and

e themap 8:UNV — L(F F) as defined by Eq. (34),
is a C¥ morphism into the Banach space L(F, F).
0(p)=(Pod )5 (34)

(equivalently, we can require 6 be a C* morphism
into the open submanifold Laut(F)).

Note: we assume that0 < k < p.

Definition 2.4 Trivialisation covering

Let W be a coproduct of F-fibers over X. A C* trivi-
alisation covering of W is a collection of pairwise C¥-
compatible local trivialisations {(Uy, ®g)} where {Uy}
is an open cover of X.

Definition 2.5 Vector bundle

Let X be a C” manifold over E, and let F be a Banach
space. An F-vector bundle of rank k over X is a coprod-
uct of F-fibers modelled over X equipped with a max-
imal CF trivialisation covering.

Remark 2.6 Maximality of trivialisation covering

One can easily verify the compatibility condition de-
fines an equivalence relation, thus any C*- trivialisa-
tion covering determines a maximal one.

Remark 2.7 Omissions for vector bundles

We say W is a bundle over X when it is unambiguous
to do so.

<

o——> UxF

7

proj;

e

Figure 3: Local Trivialisation

Q=

The above definitions calls for some commentary, our end
goal is to make an arbitrary rank C¥ vector bundle W a C*
manifold. Open sets will still be our primary topological
data. To ensure that W is as similar to X as possible, the
eventual manifold structure we will put on W will embed
the structure of X into W. We are repeating (essentially)
the same argument as in the submanifold case but with
the roles of X and the submanifold S reversed.
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Suppose we have a structure on W, then X = Upexipt x0
is a submanifold of the W as E splits in the product space
E x F. Let us motivate a couple of the requirements above.

Definition 2.2 (1) U is required to be open because W in-
herits part of the topology, and hence the charts in E whose
domain is a subset of U,

Definition 2.2 (2) The second requirement implies each ®
is in bijection with o) = U x F, which is open in E x F,
which will allow us to construct bijections with open sub-
sets of the model space E x F. Furthermore, Eq. (35) below
holds for an arbitrary V < X.

®|,1ynyy isabijectiononto UNV x F (35)

Definition 2.3 (1) The overlap restricts to a toplinear iso-
morphism on each fiber because, it allows us to quotient
out the effects of the trivialisation transitions, by rehears-
ing the same 'coproduct and quotient’ argument in Defini-
tions 1.18 to 1.20.

Definition 2.3 (2) The requirement that the mapping
Eq. (34) is a morphism, turns out to be necessary for @,
to be a C¥ isomorphism.

Suppose W is an F-vector bundle over X with the trivi-
alisation covering {(U% ®,)}. For each @, we can cover
U® using chart domains (Ug,(pg) in X — without loss of
generality, we can assume Ug < U by restricting the chart
domain and relabelling.

Similar to the construction of the induced atlas of a sub-
manifold, given a 'piece’ of the original manifold X — in-
stead of dropping the coordinates that correspond to E,,
we add an F-component to construct a bijection with an
open subset of E x F. This is shown in Eq. (36)

‘Pﬁ U“—»UﬁxF defined by (pﬁ ((pﬁmdF)oq)aan
(36)

Remark 2.8 Hats and wiggles

Here, ’l\fg should be interpreted as the inverse image of

the open set Ug through 7. Similarly, Ug is the image

a a
of Uﬁ through Pg-

The collection of charts A, in Eq. (37) cover W with their
chart domains, and each chart is in bijection with an open
subset of E x F.

B’

A= {(U“ ~“) (U%,®,) is in the trivialisation covering of W. }

(37

Proposition 2.9 Structure of a vector bundle

Let X be a CP manifold modelled over E. If W is a
C* vector bundle modelled on F over the manifold
X, then W is a C* manifold modelled on the product
space E x F. Furthermore:

1. The canonical projection n : W — X is a mor-
phism and a submersion.

2. X is C* isomorphic to a submanifold of W

Proof. Suppose we are given two charts in Eq. (37), (Ual),

and (ng,wﬁz) First, prove that (pﬁl (U”‘l N U 2) is open in
ExF:

~Q] (7701 ~ 7722y _ ay _ s
(Pﬁl (Uﬁl nUﬁz) - [((I)ﬁl deF)o(I)al

TTa1 TT2
(Uﬁl n Uﬁz)

=[(@f! xidp) oy, | 7 WS N UL
— (% i a az
- ((pﬁ1 X ldF)((Uﬁl n Uﬁz) X F)
Suppressing restrictions and computing the chart transi-
tions in Eq. (38),

P2 (79) " = @l xidp) o @a, 05! o (08 xidr). (38)

which is clearly a bijection. And it is not hard to see that
Eq. (38) can be factored into

araz

1
75, (75) o= (‘pﬁﬁ 0,

005" (x)(v)) (39)

for any x € (p (U“‘“z) and v € F. From Eq. (39), it should
now be clear why we demand k < p . The mapping in the
second coordinate within Eq. (39) can be reduced to a com-
position with the evaluation map E: Laut(F) x F — F.

0095 W) =Eo (100 (@51 xidr).  (40)

Since E is continuous and bilinear, Eq. (40) and hence
Eq. (38) describes a C* mapping between open subsets of
Banach spaces. It is a morphism, and reversing the roles of
the two charts proves its inverse is again a morphism.

To prove r is a submersion, recall W is the set-theoretic
disjoint union of F-fibers. Every element in W can be rep-
resented by (x,v) € X x F. We will identify elements of
W as elements in X x F. However, this is not a manifold
isomorphism.

Fix (x,v) € W, it is in the domain of some chart (ffg,(jﬁg).
The 7-image of the chart domain is 7z~'(U%) = U% be-
cause 7 is surjective. Using Eq. (36) and the diagram found

Updated 2024-11-13 at 17:11
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in fig. 3, the coordinate representation of 7 becomes
T e = 9 om0 o ()" xidr)

= (p% o proj, 0(((,0%)_1 X idp)
= projl(idUg xidp) (41)

We can differentiate both sides of Eq. (41) and if we write
U= Ug, we obtain Eq. (42).

VxeU,veF
(42)

Dproj, (idy x idF) (x, v) = proj, € L(E x F; E)
which means 7 submersion.

Finally, the subset X x 0 € W is easily shown to be a sub-
manifold of W, and is isomorphic to X by dropping the F
coordinate and retracing the argument we made in con-
structing the structure of W. ]

Remark 2.10 Pair of bundle charts

If X is a manifold and W a vector bundle over X, the
charts realizing the representations of 7 in Egs. (41)
and (42) are called bundle charts.

Definition 2.11 Section of a vector bundle

Let W be a bundle over a manifold X. A section of W
is a morphism o € Mor(X, W) such that the diagram
in fig. 4a commutes, which is synonymous with 7o =
idx. A local section of W is a morphism o : U — W
where U € X is viewed as a submanifold and 7o = idy.
We denote the sections of W by I'(W).

Trw)= {0 : X — W, o is a section of W.} (43)

The zero section of W is the section o (p) = 0 € W), for
every p € X. If o is a section of W, supp (o) refers to
the support of o, and is defined in Eq. (44).

supp (0) = {pe X, a(p) £ 0} (44)

Remark 2.12 Bundle coordinates

Let X and W be as in Def. 2.11, and suppose o is a sec-
tion on W. Using a pair of bundle charts, (U) € X and
(U) € W, we define the bundle coordinates of o

Oyg=@ooop” (45)

expanding the induced chart on W within Eq. (45)
reads

0y =(@xidp)odogogp™ (46)

Refer to the diagram in fig. 4b. We will always use bun-
dle charts when discussing the coordinate representa-

tion of a section, and we write

oy=0yg=0
Sections are precisely the morphisms into W whose
coordinate representation resembles that of a graph:
6 : U — U x F and because of this: we identify 6(p) =
(p,v)withveF.

S
S

N\,

w
o/ |
b
1
X
(a) Section of a bundle
U—ao— UxF
o/ S
T proj; @
1l R
U x F
| A
(p ~
1
U

(b) Local coordinates of a bundle section

Figure 4: Diagrams for bundle section and its local representation

2.2. Tangent Bundle

Definition 2.13 Tangent bundle

Let X be a CP manifold over E, the tangent bundle is a
E-vector bundle of rank p — 1, denoted by T X, and

TX =[] TX.
xeX

The construction of the tangent bundle is outlined in
Note 2.14.

Note 2.14 Construction of the Tangent Bundle

Let X be a CP manifold with p = 1, so that the tan-
gent space at every point is defined. If p € (U;, ;)
for i = 1,2. Then ¢;2 is a CP isomorphism between
@1 (Ur2) and @2 (U;2); whose derivative is a cr-t map
into Laut(E) that encodes the transformation be-
tween the concrete tangent spaces. In the notation
of Eq. (11), this means

x— D@ip(x) isin  CP~1(0yy, Laut(E)).

In fact, the tangent bundle TX 2 Hpex TyXisa cr-!
vector bundle (modelled on E) over X. If (U,¢) is a
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chart in X, it induces a local trivialisation on T X by
taking each tangent vector v € T, X to its concrete rep-
resentation (p, ¥) € X x E.

®:U—UxE and @)= (p,D) (47)

where (U, @, p, ?) is a concrete representation of v €
TpX.

Similarly, we have the cotangent bundle which is modelled
on toplienar dual of the tangent spaces of X.

Definition 2.15 Cotangent bundle

Let X be a C” manifold over E, the cotangent bundie is
a E-vector bundle of rank p — 1, denoted by T* X, and
T*X =[] T« X",

xeX
where T, X is toplinearly isomorphic to X, and T, X*
its toplinear dual.

2.3. Notes and References

Category Theory

Let X and E; be Banach spaces for i = 2. We discussed
the difference in the role that a toplinear mapping f €
L(Ey, E») plays in pushing points from E; — E5, and the
role it plays from pushing incoming maps with source X
from L(X, E;) — L(X, E») by composing the incoming map
with itself.

fiE1—Ey and f;:L(X,E))— L(X,Ey) (48)
where the ¢ within f, stands for composition. This is sum-
marized in fig. 5

X — 21— By
AN |

Ae(f) f

E,
Figure 5: Functorality through post-composition

The two maps f and f; often thought of as the same, and
we can identify f with two separate actions. Here, it is
not so obvious why we need the concept of functorality,
a closer look at the different roles that the same math-
ematical object can play will surely motivate the above
discussion.

Let E; be Banach spaces, f € CP(E, E2) and A € L(E;, E3).

e The derivative of f is a continuous map Df : E; —
L(Ey, Ep).

e The derivative of A (now ’identified with A €
CP(E,, E3)), is continuous constant map from E; to
L(E;, E3)

D(Aof)=AoDf(x) (49)

but what if we have a multi-linear map whose destination
is E1, and what about symmetric/alternating multi-linear
maps, continuous maps, C” morphisms? Should we let f
take on all of those roles as well? Should we identify f with
its adjoint as well? This is the first of the many problems.

The problem becomes even clearer when we look at maps
between F-fibers. Fix a manifold X and F;-bundles W'
over X for i = 2. Suppose A: X — W' is a section on W1,
and A e L(Fl,Fz).

Ateach point p € X, ourlinear map A can be identified with
the linear map that acts between the fibers.

.7l 2
Ap:Wh—W?

which is toplinear hence a morphism. Our main problem
is concerned with the conditions under which the compo-
sition A A — as defined in Eq. (50) — is a morphism.

AA:X—W? and (AA)(p) = Ap(Ap) € W) (50)

Under what conditions can a morphism take on additional
roles? The mapping 1, on each tangent space is a C”
morphism in the manifold sense, and the morphisms that
preserve the CP smoothness of sections are called VB mor-
phisms. Which we will define after some more category
theory.

For the remainder of this section, let C; and C, be cate-
gories. We denote the objects of C; by E;, and the objects
of C, by F;.

Definition 2.16 Functor

A correspondence 6 between C; and C, is called a
functor — which we denote by 6 : C; = C, — if all of
the following rules satisfied.

Obl 6O maps objects in C; to objects in C,. We write
VE€ Ob(Cy), E’=0(E)e0b(Cy) (51)

Morl 6 associates morphisms in C; to morphisms in
C, that respects Ob1.

Vf eMorg, (E1,Ea), 0(f) € Morg,(EY,ES)  (52)

Mor2 Identity is associated with identity: 0(idg) =
e(idg(E)).

Mor3 Commutes with inversion: 8(f~') = 0(f)~" if
the inverse of f exists.

Updated 2024-11-13 at 17:11

Page 12



Geometry

2. Vector Bundles

Mor4 Functoral: 6(go f) =0(g) o0(f).

Note 2.17 The Hom x functor

We continue our discussion from fig. 5. Recall Bang, is
the category of Banach spaces over R, and we will re-
fer to toplinear morphisms as morphisms for brevity.
If X is an object in Bang, the Homy functor is a covari-
ant functor between Bang and L(X,:) — the space of
toplinear mappings with source X such that

1. to each E; € Ob(Bang) Homy(E;) = L(X,E;) —
the space of incoming morphisms with source
X, and

2. to each morphism f € L(E;, E») another mor-
phism between L(X, E;) and L(X, E>) — denoted
by (Homy) f.

3. The functor Homy converts outgoing mor-
phisms from E; to the redirection morphism of
incoming morphisms with source X.

Notice this is precisely what the diagram in fig. 5 de-
scribes.

Proposition 2.18 Hom x functor is a functor

The Hom yx functor as defined in Note 2.17 is a covari-
ant functor.

Proof. Postponed.

Note 2.19 The tangent space functor

Let X be a C' manifold, we call the tuple (p, X) for
p € X the centering of X centered at p. The category
of pointed manifolds, denoted by Man.. Its objects
consist of all centerings across C! manifolds, and the
morphisms in Man, are called pointed morphisms.

If (g,Y) is another object in Man,, a pointed mor-
phism between (p,X) and (q,Y) is a tuple (p,f);
where f is a manifold morphism between X and Y
and f(p) = q. We sometimes write f, = (p, f) when it
is clear.

The tangent space functor, denoted by T : Man. =
Bang is a covariant functor where

» we define T(p, X) = T, X that takes a pointed C!
manifold to its tangent space, and

e to each pointed C' morphism fr €
Moryan, ((p, X) (g, Y)) we associate with the

toplinear mapping

Tfy=df(p): TyX —TyY (53)

Proposition 2.20 Tangent space functor is a functor

The tangent space functor as defined in Note 2.19 is a
covariant functor.

Proof. Postponed. |

We leave the verification that T satisfies the properties in
Def. 2.16 as an exercise. Dual to the concept of a functor is
that of the cofunctor, which — for our purposes — captures
the idea of the toplinear adjoint.

Definition 2.21 Cofunctor

Let C; and C, be categories. A correspondence 1) :
C1 = G, is called a cofunctor (or a contravariant func-
tor) if all of the following rules are satisfied.

Ob 7 maps objects in C; to objects in C». We write
E* = A(E) € Ob(Cy) for every E € Ob(Cy).

Morl 7 associates morphisms in C; to morphisms in
C, that respects Ob1.

VfeMorg, (E1,E2), n(f)€Morg, (E,E])  (54)

Mor2 Identity is associated with identity: n(idg) =
n(idye)-

Mor3 Commutes with inversion: n(f™!) = n(f)~! if
the inverse of f exists.

Mor4 Cofunctoral: n(go f) =n(f) on(g).

Remark 2.22 Cofunctors are opposite to functors

The cofunctor 71 reverses the arrows a morphism f.
Refer to fig. 6 for a comparison between Eq. (54) and
Eq. (52).

Note 2.23 The Hom~ cofunctor

Let X € Ob(Bang), it defines a cofunctor from Bang &
L(-, X) where L(:, X) is the space of toplinear mappings
whose destination is X.

1. to each E; € Ob(Bang) Hom* (E;) = L(E;, X) —
the space of outgoing morphisms with destina-
tion X, and

2. to each morphism f € L(E;, E») another mor-
phism between L(E;, X) and L(E2, X) — denoted
by (Hom*) f.

3. The functor HomX converts outgoing mor-
phisms from E; to the precomposition mor-
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phism which acts on morphisms with destina-
tion X.

n(E)) <—n1— E; —o0— 0(E)
T | |
n(f) f 0N

| ! !

n(Ez) <—1—— E — 00— 0(E»)

Figure 6: Functor 0 vs. cofunctor n comparison

3. Coordinates

3.1. Introduction

In the previous chapters, a chart (U, ¢) was often equated
with its domain. We will now express a concrete tangent
vector as (p, ), omitting any reference to the chart or its
domain.

Let X be a manifold and F a Banach space. Consider a
morphism f € Mor(X, F) and fix a point p € X, and write
g = f(p). By adopting the canonical interpretation w for a
tangent vector w € Ty F (as discussed in Rmk 1.23), we

* reinterpret the differential at p df), as a linear map
from T, X to F,

« always use the standard chart (idg, F) so that f = fur.

In this context, morphisms into R almost serve as test func-
tions in the framework of distribution theory. This requires
a definition.

Definition 3.1 Function on X

Let X be a manifold of class C” over R” for n,p = 1.
A function on X is a morphism f : X — R, where R
should be interpreted as a manifold. We denote the
commutative ring of functions on X by CP(X,R) or
CP(X). If U is an open subset of X, its functions are
denoted by CP(U,R) or CP(U).

3.2. Exterior Derivative

Let X be a manifold, and f € CP(X). If y: (-6,+0) — X is
a curve starting at xp € X with velocity v, the composition
foyisamorphism. Let us write

F:(=6,+6) =R, F(e)=foy(e)—foy(0) (55

Suppose we wish to measure the rate at which f moves in
the direction of v, then we can simply take the derivative

of Eq. (55). We define the exterior derivative of f at xo, de-
noted by d f (xo) : Ty, X — R by Eq. (56)

df(xo)(v)=DF(0)(1) where F=foy  (56)

for any curve starting at xo with velocity v.

Let E be a Banach space, and suppose w is a k-form on E,
and xp € E with k + 1 tangent vectors vg, . The parallelop-
iped defined by the k + 1 vectors is

PxO(vM)z{x0+ Y 4, 0< t,-slVi=k+1}

i=k+1

As with Eq. (55), we can integrate over the boundary de-
fined by Py, (vk11), and obtain a new function. We can
shrink each v; by €;, and we define

Ek+1

Petog)={x+ ¥ v, 0sti<eVi=k+1] (57)
o i=k+1
(Note: Perhaps after shrinking the domain of F, here we
should replace everything by their coordinate representa-
tions).

w (58)

Ek+1

X0 (Vi+1)

F:(=6,+6)"1 - R, F(€g+1) =f

We define the exterior derivative of a k-form by the map
DF(0) 1%+,
3.3. Derivations

For the rest of this chapter, assume all manifolds to be C*°
manifolds over R”.

Definition 3.2 Algebra of germs

Let X be a manifold, and p € X. A germ at p is an
equivalence class of smooth functions, under the re-
lation f ~ g iff f = g on some neighbourhood of p.
The algebra of germs a p is denoted by C;°(X), under
pointwise multiplication.

Definition 3.3 Derivation at a point

A derivation at a point p is a linear functional v €
Cy°(X)* on the space of germs, that satisfies the prod-
uct rule:

vim(fi) = Y m(fi=1(p),Vfi-1, fi+k=i)»
i=k

where m denotes pointwise multiplication. The set of
derivations at p is denoted by D, X.

We turn to the case in R”. Let U be an open subset of R”,
and p € U. To every smooth function f € C*°(U,R), and
e T;U =R", we define

0, /), = DF(P)(D).
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We remark that the right member can be computed using
(D,grad f(p))gn. Furthermore, f = ¢ on some neighbour-
hood about p, iff (0, f — &) T,0 = 0; and the product rule
tells us that (7, -) T,0 is a derivation. On the other hand, the
components of ¥ can be computed by deriving the coordi-
nate functions: (9, e;)y, ;= 0.

Proposition 3.4

Let X be amanifold and p € X. To every tangent vector
veTpX, and f € C;’,"(X),

w, A 1,x =Dfur(p)(®)

Let E and F be Banach spaces and U € E, suppose f is a
morphism from U to F. If p is a point in U, D f(p) is of
course a linear map from E to F; this suggests a natural
pairing D of f with and (p, v) € U x E as shown in Eq. (59).

D:(UxE) x kU, F) — F: ((p, v),f] —~Df(p)(v) €F
(59)
Suppose F = R and denote pointwise multiplication on R
by m. The above pairing trivially satisfies the product rule
displayed in Eq. (60).

Dm(f)(p)(v) = ) m(fi-1(p), Dfi(p)(V), fi+x-i(p)) (60)
i=k

where f € CP(U,R). Next, if f is a function (from a man-
ifold X) defined on an open neighbourhood U of p. If v €
Ty X, the commentary in the introduction suggests a ‘dual-
ity pairing’ between f and (p, v) in the form of Eq. (61).

D:(UxE)x CP(U,F) — F and D((p, u),f) =df,v)
(61)
By definition of the differential d f},, the right hand side of
Eq. (61) is representation independent, hence

We have shown every tangent vector is a derivation, since
the product rule descends from Eq. (60) and its computa-
tion in coordinates in Eq. (62). If X is finite-dimensional,
Prop. 3.6 shows derivations at a point p € X are uniquely
represented by a tangent vector.

Proposition 3.6

Let p be a point on a manifold X, then its tangent
space is isomorphic to the vector space of derivations.
If (p, §) is a concrete tangent vector, its derivation of f
computed using Eq. (62).

Proof. Postponed. u

3.4. Boundary

Definition 3.7 Subsets of the upper half-plane

Let n = 1, the upper half plane of R" is the subset H" =
[x" = 0]. Its topological interior (resp. boundary) is
denoted by IntH" = [x" > 0] (resp. dH" = [x"* = 0]).

We wish to define a notion of the boundary for a manifold.
Instead of modelling X on open subsets of R”, we consider
open subsets of both R” and H". To wit, we start by gen-
eralizing the notion of C” smoothness between arbitrary
subsets of R”. Let S < R” be a subset of R”, recall that:

A function f:S — R™ is said to be continuous

on S, if f71(U) is relatively open in S for every

U<R™,
The take-away intuitinon for this is that manifolds with
boundary are supposedly used to model geometric objects
that are suddenly ’cut off’. In the case of the upper half-
plane, this manifests in a sudden stop in the n-th coordi-
nate. The morphisms we seek are the ones which are ordi-
nary morphisms but whose domains ’cut off”.

Let F: S — S’ be a mapping between arbitrary

D((p,v), f)=Df(P)(D), where the right member is an ordinary desivaséts of R” and R™. It is a C” morphism, when-

(62)
for any representation (p,7), f. We also see that
Dlp,v), f) = @((ﬁ, D), f), which shows functions defined
on U are dual to T, X for each p € U. We will make this
notion precise when we introduce covectors.

Definition 3.5 Derivation at p

A derivation at p is a linear functional v on C?P(U,R),
where U is any neighbourhood of p; such that for f; €
CP(U), Eq. (63) holds.

v(m(fo) = Y m(fiz1(x), v(fi), fisr—i(x))  (63)
i=k
We will denote the space of derivations at p by D, (X),

and if v € D, (X), we say v derives f for any function f
defined about p.

ever each point p € S admits a C” extension to a
neighbourhood containing p.

With this, a CP isomorphism between subsets of R” is a bi-
jective CP morphism whose inverse is also a C” morphism.

Definition 3.8 Boundary chart

Let X be a non-empty subset. A boundary chart on
X modelled on R” is a tuple (U, ¢), such that U < X,
@(U) = U is an open subset of H", and ¢ is a bijection

A

onto U.

To distinguish between this new definition of the previous
one, the word chart will always refer to the charts defined
in Chapter 1. If we wish to be precise, we will use the word
interior chart.
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Definition 3.9 Compatibility between boundary and
interior charts

Let (U,¢) and (V,¥) be boundary or interior charts
of X, modelled on R” or H". They are called C”-
compatible (for p = 0) if Un V = &, or both of the fol-
lowing hold:

* p(UnV)and ¢ (U N V) are both open subsets of
R” or H™.

« the transition mapwop ' :UNV) —yw(UNV)
is a CP isomorphism between open subsets of R”
or H".

Definition 3.10 Boundary atlas, structure with
boundary

Let X be anon-emptysetand p = 0. A C” boundary at-
las on X modelled on R” is a pairwise C”-compatible
collection of charts {(Uy,®4)} whose union over the
domains cover X.

If A is a boundary atlas of X, the maximal boundary
atlas containing A is called the CP boundary structure
determined by A. A CP manifold with boundary mod-
elled on R” is a a non-empty set X with a CP boundary
structure modelled on R”.

We also have the following terminology for points in a
manifold with boundary X. Let p € X,

* pis called a boundary point whenever it is in the do-
main of a boundary chart (U, ¢), and ¢(p) € 0H",

e pis called an interior point otherwise.

Remark 3.11

It can be shown (using deRham cohomology, see
Chapter 16-17 [Leel3]) that a point on a manifold can-
not be a boundary point and an interior point at the
same time.
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