Chapl-6 Booster

Contents
1 Estimates
1.1 The Second Property . .............
1.2 Accumulation Points . . ... .........
1.3 Subsequential Limits . . ............
1.3.1 Additivity of Subsequential Limits . .
1.3.2  Multiplicativity of Subsequential
Limits . .................
1.3.3  Subsequential Limits of bdd. Se-
QUENCES . . . v v v v v e et
1.3.4 Suprema and Infima Calculations of
bdd.Sets . . ... ............
1.4 Boosted Triangle Inequalities . ... ... ..
1.5 Maximum, Minimum Estimates. . . .. . ..
1.5.1 Positive and Negative Parts . . . . . .
1.6 Binomial Estimates . ... ...........
1.6.1 Binomial Theorem . ... .......
1.6.2  Sequences with Polynomial Growth .
1.6.3  Applications of Binomial Estimates .
1.7 LPdifferences ..................
1.7.1  LP uniformly bdd. sequences
1.7.2  Brezis-LiebLemma ..........
1.8 Concavityofln(x) . ...............
1.9 Uniform Convergence and Modulus of Con-
tinuity . ... ... o oo
1.9.1 Absolute Convergence of Series

2

3

1.9.2  Uniform Convergence and Differen-
tiation
1.10 PowerSeries . ..................

1.11 Weierstrass Type Approximations

Approximations from a Generating Set

2.1 ProofTechniques ................
2.2 Estimating Functionals . . . . ... ......
2.3 Estimating Sub-sigma Algebras, Probability .
Measure Theory
3.1 h-intervals ....................
3.1.1 Outlinefor1.15 . . ... ........
3.2 Convergence Theorems. . ... ........
3.3 ConvergenceinMeasure . . ..........
34 SignedMeasures . . . . ... ..........
3.4.1 Rearrangements ............

Anson Li

10

3.4.2 Kernel of a Signed Measure
3.5 Complex Measures

14

3.5.1 Decomposition of Complex Measures 14
Point Set Topology 15
4.1 AdherentPoints . ................ 15
4.2 SeparationAxiomsS. ... ............ 15

42,1 1LSCTopology . ............. 16
43 DirectedSets . . ................. 16

4.3.1 Nets and first countable spaces 16
44 DenseSets ........... ... .. 16
45 Continuity . .......... ... .. 17
4.6 MetricSpaces. . .. ... ... ... 17

4.6.1 Baire Category Theorem. .. ... .. 17
4.7 ProperMappings . ............... 18
Functional Analysis 18
5.1 OperatorNorm. .. ............... 18
5.2 Seminorms . ............. ..., 18
5.3 FactorSpaces................... 20
5.4 Successive Approximations . .. ....... 21
5.5 Geometric Arguments . ............ 21

5,5.1 Convexity . ............... 21
5.6 Closed Subspaces . ............... 22
LP Spaces 23
6.1 Retracts . ........... ... ... ... 23
6.2 Distribution Functions . . ... ........ 23
Minimax Principles 24
7.1 Rabinowitz 4: The Saddle Point Theorem .. 25
7.2 Rabinowitz 5: Some Generalizations of the

Mountain Pass Theorem ... ......... 25
7.3 Constructionofpgfield. .. .. ........ 25
Differential Equations 25
Radon Measures 25
9.1 Riesz Representation Theorem . ....... 27
Fourier Analysis 27
10.1 Weak Topologies . . . ... ........... 27

10.1.1 FrechetSpaces ............. 27
10.2 SchwartzSpace . ................ 28
10.3 Lp and Bounded Convergence . . . . ... .. 28
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1. Estimates

10.4 Translations and Convolutions

1. Estimates

1.1. The Second Property

Let Abe non-empty and bounded. The infimum of Ais the
real number s, = inf A such that

Lower Bound Property s. < x forall x€ A, and
Second Property of the Infimum for all € > 0 there exists
X € Awith xz < s, + €.

It is easy to see that for a given number c € R, ¢ < s, iff
the lower bound property is satisfied, and s, < c iff the ¢
satisfies the second property of the infimum.

Some applications: Brezis Corollary 2.11. Folland 1.10,
1.17.

Similarly, the supremum of A is the real number s* = sup A
such that

Upper Bound Property x < s* for all x € A, and
Second Property of the Supremum for all € > 0 there ex-
ists x, € Awith s* + € < x.

Definition 1.1

Let A < R be non empty. A number c € R is said to
satisfy the second property of the infimum if for every
€ >0, there exists x; € Asuch that x, <c+e¢.

Proposition 1.2

Let A € R non-empty, ¢ € R satisfies the second prop-
erty of the infimum, iff ¢ is larger than inf A.

Definition 1.3

If c1, ¢ € R, we say that ¢ is as small as ¢, if ¢; < ¢».

1.2. Accumulation Points

Let A < R be non-empty and bounded. Under what con-
ditions can be assume inf(A) = infacc(A4), and sup(A) =
supacc(A)? The equality clearly does not hold for all A,
take A = {0} U [1,2], then inf(A) = 0 but acc(A) = [1, 2] so
that infacc(A4) =1 #0.

In general however, we have the following;
inf(A) < infacc(A).

To prove this: let y € acc(A), we know that y can be ap-
proximated (in the topology of R) by elements of A, so
let y = limx, for (x;) € A. The infimum over A clearly
bounds each x, from below, so inf(A) < y for all y. There-
fore inf(A) < infacc(A).
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1. Estimates

Remark 1.4

Let A <R be non-empty and bounded. A number s, is
the infimumof Aifforall ye A, s, < y,andforalle >0
there exists y € A where

S« S Y<Site.

We can replace the strict inequality by a regular in-
equality. Because the strict inequality implies the ordi-
nary inequality, and if the condition with the ordinary
inequality holds, we simply take 27! > 0 and obtain
Yeo-1 SO that

S < Yeo-1 =S4 +e2 b <5, +e.
The second property of the infimum is precisely, (which
holds for ce Riff ¢ = s.)

There exists a sequence (y,) < A where
limsup,,_.o, Yn < S«.

1.3. Subsequential Limits

Let (x;) < R, there are two properties of the limit inferior
worth mentioning:

Xp — +oo iff liminfx, = +oo,

and x; is bounded below iff liminfx,, # —oco.
Similarly, x,, — —oo iff limsup x; = —oo, and x,, is bounded
above iff limsup x;, # +oo.

1.3.1 Additivity of Subsequential Limits
Let (x;;) and (y,) be R-valued sequences that are bounded
below. Then the limit inferior is *super-additive*.

liminfx, +liminfy, < liminf(x, + y,).
n—oo n—oo n—oo

Suppose at least one of the x, or y, — +oo, without loss
of generality: liminf,, . x,; = +oo, then the sum (x, + y,)
also converges to +oo as y, is bounded below, and the right
hand side is equal to +oo.

If both of the limit inferiors are finite, we see that (upon
adding two separate inequalities),

inf x,, + inf y, < x; + V.
n nzmyn mTYVYm

sequence. The left hand side simplifies to inf,>;x, +
inf,,> ¢ y,, taking limits on both sides gives

lim | inf x, + inf y, | < liminf(x, +
Jim (i ) < i+ 5

By continuity of addition, we can push the limit into each
of the two terms on the left, and

liminfx, +liminfy, <liminf(x, + yg).
n—oo n—oo n—oo

Similarly, if (x,) and (y,,) are real-valued sequences that are
bounded above, then the limit superior is subadditive.

limsup(x, + y,,) <limsup x, +limsup y,.
n—oo n—oo n—oo

We can prove this by taking a reflection, let x}, = —x; and
¥, =—Yn, then:

li,{ﬂg}f(x;z) + ”,?l%},}f%) < li,?lgr.}f(x; +¥0),
which is a reflection away from the desired inequality.

1.3.2 Multiplicativity of Subsequential Limits

Let (x), (¥») <R be non-negative sequences. Then,

(liminfx,)(liminfy,) <liminf(x,y,) <limsup(x,y,) < (limsup x,,) (lims

this can be proven by minimizing (resp. maximizing) the
product termwise just like in the proof for additivity. For
all j=n,

(it o) v = 10 = s 5 sp v

Now we send n — oo,

1.3.3 Subsequential Limits of bdd. Sequences

Let {x,} < R be bounded, and we write E;, = {x,,, m = n},
it is clear that limsup x, = inf,>; sup E,, and liminfx, =
sup,,-; infE,. We see that

n=zm
For a fixed k = 1, we can take the infimum respect to m > k a<limsupx,<b iff {4~ frequently
on both sides: Xp <b eventually,
i (jof 0+ nf yo) < inf (o + ) and
i i i - xp<d frequentl

.and because (mfnz'm Xn)m a'nd (1nfn.2m Yn)m ar‘e 1ncre?ls c<liminfx,<d iff n q y

ing sequences, their termwise sum is also an increasing c<x, eventually.
Updated 2024-11-18 at 00:40 Page 3
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1.3.4 Suprema and Infima Calculations of bdd. Sets

Let A= (ay,...,a,) € RDbe afinite set, then

a<x forsomexe A

a<max(A) <b iff
x<b forallxe A,

and

. . x<d forsomexeA
c<min(A) <d iff
c<x forall xe A.

We extend this to the infinite case, but now one of our in-
equalities will have to be strict. Starting with the case with
strictinequalities only, if A € Ris non-empty and bounded,

a<x forsomexeA

a<sup(A)<b iff
x<b forallxe A,

similarly

x<d forsomexeA

c<inf(A)<d iff
c<x forall xe A.

The ’for all’ bounds can be replaced with regular inequali-
ties. This means

sup(A) < b
¢ <inf(A)

iff x<b VxeA, and
iff c<sx VxeA.

Finally, if the supremum (resp. infimum) of A is attained,
then we can replace all of the estimates by regular inequal-
ities. This holds if A is closed.

1.4. Boosted Triangle Inequalities

Let (X, d) be a metric space, the distance function d : X x
X — [0, +o0) satisfies the triangle inequality.

d(xl,xg) = d(xl,z) +d(XZ,Z) Vxi1,x,z€ X.

Lemma 1.5 Boosted Triangle Inequality
Let x1, %, 21,22 € X, then

|d(x1,21) — d(x2,20)| < d(x1,%2) +d(z1, 22).

Proof. Recall that |a| = max(a, —a), it suffices to show that
d(x1,2z1) — d(x2,2) is bounded above by the sum of dis-
tances because we can replace x; with x; and z; with z, to
obtain the desired estimate. By adding and subtracting a
factor of d(x1, z2) and using the triangle-Lipschitz inequal-
ity twice, we obtain

d(x1,z1)—d(x2,22)£d(x1,22) < d(xl,zl)—d(xl,Zz)]+[d(x1,22)—d(x2,22)

The absolute values of two squared terms on the right hand
side are controlled by d(z;, z2) and d(x1, z2) respectively, in
symbols:

ld(x1,21) —d(x1,22)| < d(z1,22) and |d(x1,22) — d(x2,22)| < d(x1, X2).

Combining the last two estimates finishes the proof. [ ]

Corollary 1.6 Continuity of Max, Min
Let x1, X2, 21, 22 € R, then
max(|x1,1z11) —max(|xz2[,|z2])| < [x1 — x2| + |21 — 22|

the same estimate holds for max replaced with min.
This means that we can estimate the difference of
maxima (resp. minima) by comparing ’'coordinate-
wise’.

1.5. Maximum, Minimum Estimates

Remark 1.7

Let {f;}] be a sequence of R-valued functions, suppose
also that h(x) and [(x) are R-valued as well, define for
all j <n,

Ej ={ze X, h(z) < fj(z)} and E; ={ze X, fj(z) <l(2)}.
It is easy to see that
U{’E;' ={z€ X, h(z) <max fj(2)},

U{‘E]_ ={ze€ X, min f;(z) < l(2)},

n’fE;' ={z€ X, h(z) <min f;j(z

n{lE]_ ={z€ X, max fj(2) < l(z

1.5.1 Positive and Negative Parts

Remark 1.8

For any z € R, write z¥* = max(z,0), and z= =
max(—z,0). It is clear that |z| = z* + z~, and an easy
geometric argument will show —z~ <z < z* < |z|. We
also have the representation x = x* —x~ forall xeR.

Lemma 1.9

For any pair x, y of real numbers, x < y if and only if
xt<ytandy =x".

Proof. If direction: To prove the first inequality, consider
the two cases when x = 0 and x < 0. If x = 0, it forces y =0,
so x* = x and y* = y, and the estimate follows from the
original one, and if x < 0, this implies x* = 0, and because
y* is non-negative, the estimate holds. For the second
inequality, write (—y) < (—x), and max(-y,0) < max(—x,0)
from the first part, and after expanding definitions, we ob-
tain the deired estimate.
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Only if direction: There are three cases, if x > 0 then x* > 0,
and y* > 0 by the first estimate, (this is because max(a, 0) >
0 iff there exists a strictly positive b € {a,0}.) so that x* = x,
and y* = y, and x < y. Next, if x =0, then x~ = y~ =0,
meaning y is forced to be non-negative, and hence x =0 <
y. Finally, if x < 0 then x~ > 0, and

1.6. Binomial Estimates

This section is inspired from a particularl section in Rudin’s
Principles of Mathematical Analysis (see the pages of
Chapter 3 on series), and Yosida’s proof for The Weierstrass
approximation theorem in 'Functional Analysis’ — Yosida.

1.6.1 Binomial Theorem

Let x,y € R, the binomial theorem tells us u(x,y) = (x +
=Xy (Z)x’”y”"’. We define r, (x, y) = (Z)x”y”"’ for0 <
p < n. The notation (n)g = n(n—1)---(n—k+1) = Hg(n—j)
is the kth falling factorial of n. If F(¢) = at” is amonic poly-
nomial, where p # 0,

F'(t)=pt™'F() and FP (1) =(p)rt *F(0.

Appealing to the chain rule, we get

6’;u(x, y) = (n)k(x+y)”_k and 6§r,,(x, ¥ = (p)kt_krp(x, ¥).

Eventually we want to fix y = 1 — x, so that (x + )7 = 1 for
all g, x, but we derive these formulas in full generality. Dif-
ferentiating both sides of u(x, y) = Z(’} rp(x,y), and multi-
plying by x* gives

M+ " *xE =Y N (p)erp(x, y).
Set y = (1-x), so that u(x) = xP(1 - x)"" and rp(x) =
(Z)x”(l —x)"Pandfork=1,2
nx=Y 'prp(x) and n(n-Dx*=) ;p(p-Dry).

We see that a polynomial in terms of x turns into a sum of
polynomials in p,

a (Pia;

F(x)zzgaixi, then F(x)=) ; Oer(x).

Conversely, a sum of polynomials in p can be converted
into a polynomial G(x)

G0 = Y0 Y0 bip! rp().

To compute G(x), we require a conversion between b; pl
and c;(p) i

Lemma 1.10

nx(1-x)= Z(’)’ Ip— nxlzrp(x) for all n=0, and x.

Proof. We write |p — nx|? = p?+(nx)?>—2nxp. Being mind-
ful of the coefficients which are dependent of p and rewrit-
ing |p — nx|? in terms of falling powers of p,

p2 + (nx)? —2nxp=pp-1+1-2nx)+ (nx)zpo.

SothatY] |p — nx|*ry(x) = n(n—1)x*+(1-2nx) p+(nx)?p°,
as Y. rp(x) = u(x) = 1 for all x. The expression simplifies

Y o lp—nxlrp(x) = n(n - 1Dx*+ nx - (nx)*

=—nx’+nx= nx(l—x).

Remark 1.11

To bound X in I!, we can try bounding Z = XY and
1/Y separately in [P, 19.

1.6.2 Sequences with Polynomial Growth

Lemma 1.12

Let 1 < x,, < nP for some p > 0, then lim|x,|'" = 1.

Proof. Write z,, = Ixnll/” —1 =0, we want to show that z,, —
0. We will prove that |z,| = w.

nth power = sum of lower order powers Using the Bino-
mial theorem, we can split the nth power into a sum of
powers of lower order.

Y koo (Dlznl* = xp < Cn?

Pick k > p large Let k > p be sufficiently large such that,
independently of n = k, and the binomial coefficient for a
fixed k is of the form (n— k)* <y (}) Sk n¥. Therefore

1/k
p plk
ol S| | Sk | | Sk =0
(%) (n—k)
General Bounds for Binomial Expansion Equation (1)
can be rewritten more carefully, if we consider for even-
tually large n (compared to k, which is held fixed)

(n=k! _(n)_nn-1)n-2)--(n-k+1) _n*
kT \k) k! k!’

the leftmost member can be supported below if we assume
n> 2k, then

nk _nn-1n-2)--(n-k+1)
2Kk = k! ’

Updated 2024-11-18 at 00:40
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and Equation (1) reads

np/k

Pk en\ VK
Iznls(&kk')) =2(k)VkF—— < Pk,
n

n

Remark 1.13

Generalize this to arbitrary exponents using the expo-
nential function and Taylor expansion?

1.6.3 Applications of Binomial Estimates

e Let x, =n''" thenlimx, = 1.

1.7. LP differences

If f; and f are in L” for p > 0, we can estimate the point-
wise difference:

Ifi = FIP < (1fi1+1F1)P,

each of the two individual terms are bounded above by

max(| fjl, 1 f1),

£y = £1P < (max( fj1,1fD + max| i1, 111)” < 2P [maxd 1, 1/0]"

The function ¢ — |t|? for ¢ € [0,400) is monotonically in-
creasing for p > 0 (use first derivative test), and we can
push the pth power into the arguments of the maximum,

|f] i Szpmax(|fj|p, If1P).

and because all norms on finite dimensional vector spaces
are equivalent to the L' norm, one sees that the quantity
max(|f;|”,|f1”) is the [*°, and can be bounded

max(|fj1P, 1 fIP) < |f;IP +1f1P.

This allows us to bound the integral of the difference by the
sum of integrals

fX|fj—f|pdx52p fXIfjlpdx+fX|f|pdx

1.7.1 L” uniformly bdd. sequences

Let f; in L? for p > 0 and f; — f pointwise a.e, suppose
also that limsup; _., Jx|fjl?dx < C, then

flfl”dst or felLP.
X

The proof is straight-forward using Fatou’s Lemma:
f liminf|f;|” dx < liminff IfjlPdx<C,
X Jj—oo j—oo Jx

the result follows because | f;|” — | f|” pointwise a.e.

1.7.2 Brezis-Lieb Lemma

We follow [BL83], see also [LLO1].

1.8. Concavity of In(x)

1.9. Uniform Convergence and Modulus of
Continuity

Let (a,) < R be a sequence, suppose that a,, — 0, then we
write a, = wy,. Next, if an,, is a sequence in N*, we say
that a,,, , = 0¥, if for every n, am,, = wp. It is easy to see if

am,n = Wm,n,

limsupay,,, =w, and
m—oo

limsupap,,, =wpn.
n—oo

We say that a;,, = wn,, if for every € > 0 there exists
N = 1 where min(m, n) = N implies a,, , < €. If (x,) isa
Cauchy sequence, then |x, — x| = w;,,. It is clear that
Am,n = Wm,n implies an, , = W' = wh,, the converse is not
true however. Finally, if | f (xo + y) — f(x0)| — 0 as y — 0, we
write | f(xo + y) — f(x0)| = wyy.

We give a few examples. In complete metric spaces,
sequences converge iff uniformly Cauchy. To see this,
fix x, — x, we can control the distance d(x,,x;,;) <
adx,xp) +d(X,xXm) =0p+ 0, =04n-

Let f: X — C be a mapping from a metric, space. It is con-
tinuous it x € X iff

sup |f(x) - f(2)| = wy.
d(x,2)<6

[ is uniformly continuous iff

sup |f(x)— f(2)| = ws.
d(x,z)<6

Let X be a topological space and E a Banach space. We use
B(X) to denote the space of bounded, E-valued functions
from X.

B(X) is complete. Fix a Cauchy sequence (f;;) < B(X) in
the uniform norm, we can borrow the completeness of E
to obtain some function f: X — E where f(x) =1lim, f,(x)
for all x. To show that ||f;, — fll, = wp, let x € X be arbi-
trary (the supremum will be taken over all such x later),
then | f,(x) = fin(X)| < Il fu — finll = Wm,n. Take the limit su-
perior as m — oo, and | f;,(x) — f(x)| < w, for all x € X, and
I fn—fllu=wn.

BC(X) is closed in B(X), making BC(X) a Banach space.
Let (f;) € BC(X) converge uniformly to f € B(X), our
goal is to show f € BC(X). Because (f;) is Cauchy, we
can use the same limit superior trick to eliminate one of

Updated 2024-11-18 at 00:40
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the variables. Fix xy € X and x; € B(r, xp), we know that
”fn _f”u =wy, and

[fn(x1) = f(x)] = fn(x0) = f(x0)| = wp.

For every n = 1, the function f, is continuous at xg, so
| fn(x1) = fu(x0)| = w}. Using the triangle inequality gives
[f 1) = Feo)l <2 fro = fllu+ 1 fu(x1) = fu(x0)|; and

If (x1) = f(x0)| <20y + W

The left hand side is independent of n, and is bounded by
Wr.

1.9.1 Absolute Convergence of Series

Lemma1.14

Let (f,) < B(X) and Y, f,, be absolutely convergent,
then there exists f € B(X) where s, = stnfj con-
verges to f uniformly.

Proof. Forevery x € X, theseries }_ ;1| fn ()| <X u>1ll fullu
is summable, and we define f(x) = lim, s,(x) pointwise.
Because the series of norms is !, so that Zj>n I fillu = wn.
The proof for uniform convergence consists of checking at
every x € X, keeping in mind that f(x) is a limit of partial
sums, not a sum, we write

1 (0 = sn()l =1 lim _$,(x) = 5,(2)]
< m 3= X0 1 il

which is bounded by Zj>n||fj||u = w,. We see that
| f(x) = sp(x)| = wp, and the left hand side is independent
of x, therefore || f — sully = Wp. [ |

1.9.2 Uniform Convergence and Differentiation

Lemma 1.15

Let f, € CY(U,F) where U € E and F are Banach
spaces. If f; converges locally uniformly” to g €
C(U,F), and f,, — f pointwise, then f € C!(U, F) and
f'=g.

“meaning Vx € U there exists Ux € U, f|y, — glu, uniformly

Proof. We want to prove, for fixed x and |y| < r for r small,

|f(x0+ ) = f(x0) — 8g(x0) W) = |ylw,.

We can also assume U, = U. The usual strategy is to ap-
proximate each of the pieces using separately, and using
some limiting argument to remove the dependence on n.
The uniform convergence of f;, — g will be crucial.

Since f;,, — f pointwise, we can write
ILf (o + ¥) = f(x0)] = [fu(xo + ¥) = fa(X)l| = wn.  (2)

Let lJ’f" = {xp + ty, t € [0, 1]} be the line segment between
Xo and xp + y, then the mean value theorem applied to f;,
reads

| fu(x0 + ¥) = fu(x0) = D f(x0) ()| < |yl sup I D f (2| = |ylwy.
zel“yro
3)
We can think of Df;, and g being interchangable 'under
the limit’ as || D f;, (x0) — g(x0) |l , = w5. Combining this with
Equations (2) and (3), gives us

If (x0+¥) = f(x0) — §(x0) (W) S wp + |Yl(@] + wy) = Y|y,

which is what we set out to prove. ]

1.10. Power Series

Remark 1.16 Power Series and Radius of Conver-
gence

Given a complex Banach space E, 1See et {c;} ;>0 S C,
we define the power series of ¢, about a € E using the
function f(x) = lim, 26‘ cjlx— a)/ for all x € E such
that the series converges (absolutely or conditionally).

The nth partial sum of f is the E-valued function,

o)=Y Jcix—a).

Define C = limsup,,_ |c,|*", then R = C™! is the
radius of convergence. The open set B(R,a) = {x €
E, |x— al < r} is known as the region of convergence.

Lemma 1.17 Convergence of Power Series

Let B = B(r, a) be as above, then for all z € B, f(z) con-
verges absolutely, and for all z € {z € C, |z—al > R},
f(2) diverges. Moreover, f € C*°(B,E) and forall k=1,
DK f,, converges to DX f uniformly.

Proof. Let z € B, rearranging we see that limsup |c,|"/" <
Iz|”! and |c,|''" < |zt eventually. (See section 1.3.4.)
Taking the nth power termwise and then rearranging, we
see that |c,|lz|" < 1 eventually. Therefore f(z) defines a
absolutely convergent geometric series for all z € B.

Recall if a series (x,) < C is conditionally convergent iff
its partial sums are Cauchy. Suppose ) x,, converges con-
ditionally, we can write the nth term x, = s, — s,-1 for
n=2,and |x,| = sy, — Sp—11 — 0. If | z| > R, then |¢,||z|" > 1
frequently, so that the series cannot be (conditionally) con-
vergent.
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1. Estimates

Next, we show f € C!(B, E) by differentiating f,
Fr00 =Y e Yd m(- @) idp(), (- @) "U2),

Which is bounded above by the following sum of sums
(noting that we do not assume commutativity)

n
Il < X lejlljllx—al ™"

j=0
The results of Section 1.6.3 tell us the the partial sums
formed by {f,} have the same radius of convergence as
{fn}, because the power series defined by {d;};>1 and
{dj-1}j=1 have the same radius of convergence for any
sequence {d;} = C.

The Lems. 1.14 and 1.15 and together with the fact that
I f# - gll, = 0 imply that f € C'(B,E). Finally, to show f €
C*(B, E), we proceed by induction. The space of operators
L(E,E) is a Banach space of its own, so is L(E,L(E,E)) =
[%(E,E), and Lk(E, E) for k = 1. Suppose Dk‘lfn converges
uniformly to DF~! f, we can rehearse the same argument,
with

n .
Dff0) =Y ¢;(jG -V (—k+D)(x—-a) k.
j=0

The formal series x — ) c;jd; x (x— a)/~* has radius of con-
vergence R, where

dir=(jj-D-(-k+D), and 1=dj=j* forlargej.

Using results from section 1.6 we see that
limsup;_,djx = 1 and DK f, converges uniformly to
some g such that DDF"1f = D¥f = g, and therefore
f€C™(B,E). [

1.11. Weierstrass Type Approximations

Building on the result in Lemma 1.10, we have the follow-
ing lemma.

Lemma 1.18

Let X = [0, 1], the space of complex-valued polynomi-
als are uniformly dense in C(X,C) = C(X). More ex-
plicitly, for all f € C(X), and € > 0, there exists an n-
degree polynomial P, such that || f(x) — P, (%), < €.
This polynomial can be taken to be

n
Pp(x)=) f(p/mrp(x) and rp(x)= (Z)x’”(l—x)”:p.
0

Proof. We use an anchor point argument.

Coveringof X The uniform continuity of f tells us
sup|_ <5 | f (%) — f())] = w5 = wy, for n~! < 4. Covering the
space X with cells of length n~!, we write

X=uj=0""[jnt, G+1n .

Totally Bounded and Uniform Continuity Although not
related to the proof, we notice that

Orpggnlf(x)—f(p/n)l s sup [f(O)-fNI=swn.

|x—yl=n~!

Alternate covering for X = [a, b] We set X = Ufa; +
(aj+1—aj)l0, 1] and ag = a, aj = a+ j(b - ayn~L. Pick
n =1 such that (b— a)n~! < 8. Also replace f(p/n) with
fla+p—ayn™).

Since Y. rp(x) = 1, for x € X, we can treat f(x) as a p-
independent coefficient and estimate the difference of f
and the pth sample |f(x) — f(p/n)|:

Ifx) =Y Flpn Hrp1 =135 (f(x) = F(prnNrp)l.

To simplify the proof We can separate the sum into two
pieces,

D s f@-FfEnr,ml=|c Y+

p_1 _p_1
x5l Ix=3 >3

Case 1 By uniform continuity, Z‘x_ P
wp,as rp(x) z0forall x € X. "
Case2 We can use Holder’s inequality again, the differ-
ence is estimated by maxo<p<n | f(x) = f(p/m)| = 2| fll4. So
we only have to control the /' norm of

Yoo rp@l= Y

|x=p/n|>1/n |x=p/n|>1/n

Irp()llx— B |x - p/n|~?

<[ Y IpWlx=-p/nPll  sup  |x—p/n|?
|x=p/n|>1/n |x—p/n\2>n’2,
O<p=n

<nx(1- x)n_2 = n_lx(l —-X).
Which is controlled by w, sup|x(1 — x)|. And

D>

|x=p/n|>1/n

Combining Cases 1 and 2 reads

Yo lf@ =A@ <wp+wn =0,

Note 1.19
Characteristics of Weierstrass-Type approximations:

convex sublevel sets satisfy uniform bound
partition of unity require topological argument and
local finiteness
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2. Approximations from a Generating Set

2. Approximations from a Generating
Set

A lot of measure-theoretical constructs make use of the
supremum or infimum of a functional defined on a smaller
subset, and extending it to the entire space by sup/inf.

We construct an abstract approximation framework. Let
Q be an arbitrary set and £ < Q be a subset on which we
define J: X — [0, +o0].

Suppose further that, for every x € Q, we associate to this
X a non-empty subset that ’approximates’ our final func-
tional I, denoted by X, < X. We then define the upper and
lower approximationsto J,

I"(x)=supJ(x) and I (x)= inf J(z)
Z€EX,

zZ€Xy

If we want our functional I* : Q — [0, +o0] to be consistent
with the old functional J, we usually demand the following:
(just to make life easy)

» Foreveryze, ze X, and

e J(2) =1I%(2) =1 (2) for all z € %, this makes I* an ex-
tension of J.

We can introduce an order relation on Q, as measured by
the functional I = I*. Given x, y € Q, we say that x is less
than y as measured by I whenever I(x) < I(y). This is writ-
ten

x<yy or x<y(meas.]I)

2.1. Proof Techniques

Technique 1 To show x < y (meas. I), it is sufficient to
showZ,cX,if I=I" (orZ, <X, whenever [ =1").

Let x € Q be arbitrary, we wish to bound I(x) by ¢ (we agree
that ¢ = 0 means c € [0, +oo] and 'bounding’ means from
above unless specified otherwise).

Ifx)ysc or I (x)<c.
Technique 2 On one hand, if I =™,
I'*(x)<c isimpliedby Z, <c (meas. I),
or 2, € {I < c}. On the other hand,
I'x)<c

isimplied by ¢ = c (meas. I), IpeZ,,

or equivalently: 2, n{l = c} # @.

Apply to Theorems 1.10 and 1.13 using this
framework.

Technique 3 The most important technique by far is to
control the terms leading up to the supremum/infimum.

Recall, if Ac R is a non-empty subset, and s* = sup(A),
s« = inf(A), there exists increasing (resp. decreasing) se-
quences in A that converge to s* (resp. s.). From Rudin
Theorem 3.19, let (ay), (by), (cn) be sequences in R, where
b,—be R, and for sufficiently large N,

Vn=N,

an<bp<cy

then the limit of b, can be controlled by the subsequential
limits of (a;) and (cy), that is:
limsup a, < b <liminfc,.
n—oo n—oo

Since I*(x) is defined by a supremum, it induces a se-
quence (¢,) < X, that increases to I*(x) (meas. I). To
obtain a bound for I (x), it therefore suffices to estimate
(J(¢pn)) 1, using another sequence (c;). We end up with the
following condition.

Let =" and x € Q, let (¢p,,) € Iy increase to I(x) (meas.
I), suppose further that there exists a sequence (y,) < Q,
where

$n=v,(@meas.l) Vn=N

and that liminf,,_., I(w,) < c. Then,
I(x) <liminfI(y,) <c
n—oo

This is essentially what Fatou's Lemma is saying.

2.2. Estimating Functionals

Let = and £® be generating sets on Q and I}, I;) cor-
respondingly. Suppose we are given some x € X where for
allgp e Z&l), ZECZ) satisfies the second property of the infimum

with respect to ¢ (meas. I), meaning

There exists some sequence (y,) < Zf),
limsup,,_.., I(w,) < I(¢), or equivalently: for
every ¢ there exists . € ZECZ) suchthaty, <¢+¢
(meas. I).

If this is the case, then I@) x) =< I(’l) (x).

Alot of the times we want to estimate the sizes of generated

functionals. When is I, = Ia)?

Note 2.1 Approximation Framework: Overlapping
Condition

Let 1) be generating sets on Q and I - ) R
be functionals defined. Suppose that for every x € Q,
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the two generating functionals satisfy an "overlapping’
condition:

JnE) NI EP) # 2,
then
Iy () < I5)(x) and o (x) < Ij)(x).

The above can be weakened to this 'cofinality’ argument.

Note 2.2 Approximation Framework: Cofinality Ar-
gument

Suppose there exists ¢y € Z(x)(x) (k = 0,1)such that
Jo(do) = J1(¢1), then

Iy () < I, ()

Proposition 2.3

Let X be a set and {Eq} e 4 and {Fg} g p be two families
of subsets of X, denote E = UE, and F = NFg, then

inf I(z) = inf inf I(2)
z€E a€AzeEy

inf I(z) = sup inf I(z).
zeF peB z€eFg

Proof. The whole proof is really tedious but I still want to
write it out in full. Let x, y € E, F, then for each a, §3,
Every x € E belongs to some E,, so

I(x) = inf I(z) < inf inf I(z).
z€Eq acAzeE,

This holds for every x, so infyeg I(x) = infy infg, 1(2).

Every y € F belongs to every Fg, so

I(y)=z inf I(z) VBeB,
ZEFﬁ

so thatinfyep I(y) = supgpinfzer, 1(2). Now fix a, f € A, B,
since
E,<E and F < Fg,

we see that infyep I(x) <inf,eg, 1(2). [ |

We outline conditions for which the second equality holds.

2.3. Estimating Sub-sigma Algebras, Proba-
bility

Let (X,)M, u) be a probability space, and if X = A} & Ay,

and (Aj, M;, p;) j =1,2 where M; = {EnAj, E € M},

and p;(E) = u(En Aj). The inclusion ¢ : Aj — X is always

measurable, and M is the o-algebra on A; generated by ;.

The second scenario is when we keep the set X fixed, but
we shrink the o-algebra on X. Let M’ € M be another o-
algebra over X. If ¢ = idy, then it is (M, M) measurable,
because ¢! (E") € M for all E' e M.

This gives us a mapping that pushes measurable func-
tion on a smaller o-algebra, to a larger one. Let ¢* :
LY (X,M) — L*(X,M, ). We can also induce a measure
on (X, M). Let u’ : M’ — [0, 1] be the restriction of y, i.e:
K=l

If fe L'(X, M/, '), then fope LY (X, M, p).
Note 2.4

Convergence in measure looks like the same as 'vanish
at infinity’ for locally compact hausdorff spaces.

Note 2.5

can we check if something integrates to zero by the
dual.

3. Measure Theory

Monotone Classes Some algebra structure (max,sup)
containing the simple functions must generate L. This
is used in Radon-Nikodym and Fubini’s Theorem.

Proposition 3.1 Equivariant Measures

Let (X, M, w), and (Y, N, n) be measure spaces, sup-
pose ¢ : Y — X is a measurable mapping that inter-
twines the two measures, i.e: u(E) = n((p’l(E)) for all
EeM. Then forall fe L*(X), ge L'(X), gop e L' (Y),

ff(x)dxszogo(y)dy
X Y

and

fg(x)dx:fgoq;(y)dy.
X Y

3.1. h-intervals

We define the following subsets of P(R),

H™ ={(d, +o0), —co < d}
H* ={(—o0, cl, ¢ < +00}
Hyp={(a,b], —co< a<b< +oo}.

In what follows, the plus sign will always refer to the dis-
joint union of sets and not a coset. Let H = H ™+ H*H;, +
{2}
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3.1.1 Outline for 1.15

Properties of F The following limits converge in [0, +oc].
to((a,b]) = F(b) - F(a) = inf inf (F(b")-F(a"))
at>ab*>b

Ho (=00, c]) =sup(F(c) - F(q)) = sup inf (F(c") - F(q))

q€Q qeQ cr>e

Ho((d, +00)) = sup(F(q) — F(d)) =sup inf (F(q) - F(d"))
q<Q qeQd*>d

Abstracting Union Behaviour Let X be a space and
2,2 cP(X).

An element F € X can be written as the union of members
in X iff

1. There exists {E,} € X, where F € UE,,

2. For this Z-cover of F,foralla € A, FNE, € X.
Applying this to F € X we get the following criterion.

Every elemegt in T is the union of elements in X,
iffevery F € X corresponds to {Ey} € X, F € UEy,
and FNnE, € X for all a.

We have the following.

Let X be a set and Z, X < P(X). Suppose that for
every pair E€ X, and F€ X, ENnF ¢ Z. Then no
elements of Z can be involved in the union of an
element in X.

Take h™ = (¢, +o00) and A < R be bounded above, their in-
tersection never an element in H{~, and from this we con-
clude.

For every A = FDU®X) = FDU®X") +
FDU(H")+ FDU(Hy) + @, if A is bounded be-
low (resp. above), then the d.u. over H* (resp.
H™) is empty.

Abstracting Disjoint Union Behaviour Suppose for all
E,E; € %, that E; n E» # &, then every FDU consisting
of elements in X contains at most one element of X.

We can apply this immediately to the unbounded rays H¥,
as:

(¢, +o0)N(c’, +00) = (max(c,¢'), +o0) and (—oo, d]N(-oo,
are both non-empty. Using the fact that the finite union
of bounded above (resp. below) subsets is again bounded
above (resp. below), we state the following.

If A= FDU((H), the d.u. contains at most one
from each H~, H*. If A is unbounded above
(resp. below) then the H~ d.u. (resp. H*) con-
sists of exactly one element.

Ordering J{;, intervals Let E; = (a;, b1], and E» = (az, by]
be elements in Hj, so that a; < by and a, < by. It is
easy to see that the two intervals overlap iff max(a;, ay) <
min(by, by), iff exactly one of the following is true

1. argmax(a;) = argmin(b;), and max(a;) < min(b;)
2. argmax(a;) # argmin(b;).

The second condition does not require max(a;) < min(b;)
to hold, without loss of generality suppose i = 1 is the
argmax and argmin of the pairs of endpoints. Then a, <
ay < by < by. This is the same as saying E; < E». In either
case, the intersection is the interval

E1 N Ep = (max(ay, az), min(by, by)].

We shall give an consequence of the overlapping criterion
of the second type.

Lemma 3.2 Properties of d.u. in hb

Let E; and E, be as above, and suppose E1 N E; = &,
then

1. ay # az, by # by,

2. a; < ayiff by < by.
If {E;}} is a disjoint sequence in }{p, then the left (resp.

right) endpoints are unique, a strict well-ordering ex-
ists for the left and right endpoints and are equal.

If E = (a, bl = FDU((a;, b;]) € Hp, when the inter-
vals are ordered by their endpoints, a; = a, b, = b, and
ajy1=bjforj=1,...,n—1.

Proof. Let € > 0 be so small that a; +¢,b; — € € Ej,
ap +¢&,by—€ € E, for all € € (0,6). If a; = ay, then
ay+¢& = ap +¢ € E; N Ey, similarly for by = b,. For
the next claim, suppose a; < a and by < bj, then
argmax(a;) = argmin(b;) = 2, so that E, € E; and the two
intervals cannot be disjoint. Repeat the same argument for
‘only if” direction.

Next, let E = (a, b] be the d.u. of elements in H, as in
the lemma. Suppose aj,1 # bj, we have two cases to
consider. If, b; < aj;1, the points in (b;, aj;1] are not
in any interval (because if so this would give us a con-

’f@?i‘i%?ﬁlm?&taﬁ]lﬁt .end-points are well-ordered). And

if aj; < by, there exists a point x in the intersection:
aj<ajy1 < X< bj<bj;1,so the intervals are not disjoint.

Finally, consider a = infE = inf\<j<,inf((aj, bjl), b =
supE = SUP<j<n sup((aj, b;]) and the fact that the end-
points are ordered. |

Let A = FDU(H), we define the positive and negative
unbounded components of A to be the intervals A** =
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(c, +00), A~ = (-0, d], where ¢ = inf{c’ € R, (¢/, +00) € A}
and d = sup{d’' € R, (-oo, d'] € A}.
Properties of d.u. of J{

Remark 3.3

F is increasing and right-continuous, so for all x € R,
F(x) =inf+s, F(x") =inf+5, F(x™).

3.2. Convergence Theorems

MCT is proven in the following . pdf document. We state
Fatou’s Lemma for convenience: if (f,;) < L*, then

f liminf f;,(x) dx < liminf f fn(x)dx.
X n—oo n—oo X

To discuss integration on L!, we need a slight modification
of Fatou’s Lemma: if (f,) < L' N L*, then the same con-
clusion holds. The proof is straightforward, because the
integral on L' N L* is the same (gives the same number) as
the integral on L*.

Indeed, if h € L' nL*, the integral on L! is the num-
ber [y h*(x)dx— [y h™ (x) dx (with the imaginary part sup-
pressed), which is equal to [, h*(x)dx, the same number
as the integral of 7 on L*.

Proposition 3.4

Ex. 2.18 Fatou’s Lemma still holds if f;, measurable,
fn = —g for some g € L* nL!. What is the ana-
logue of Fatou’s lemma for non-positive func-
tions?

Ex. 2.19 Suppose {f,} € L'(w) and f,, — f uniformly.
a) If u(X) < +oo, then f € L' (u) and [ f,, — inf f.
b) If u(X) = +oo, the conclusions of a) can fail.

Ex. 2.20 (Generalized DCT) Let (f;,),(gn),g€ L', f —

fr8n—gae [ylgnldx— [yl|gldx, and
| fnl < 1gnl

then, [y fn(x)dx — [y f(x)dx.
Ex. 2.21 Suppose f,, f € L' and f, — f a.e. Then

[1fu=fldu— Oiff [|fuldu— [1fldu. (Use Ex-
ercise 20.)

pw a.e.,

Proof. Ex. 2.20) Unless the measure is complete, f is not
necessarily measurable, but we can always identify f with
a measurable function that agrees with f a.e. To show that
f € L!, by taking limits on both sides

IfI=<lgl pwa.e. means flfldeflgldx-
X X

Assuming that f;, is real valued for the moment, our goal is
to show that
Ll
+ fn(x)dx
X

Ll
+ f(x)dx <liminf
X n—oo

Itis clear that|g, |+ f;, = 0 pw a.e., so that we can use Fatou’s
Lemma for L' n L* functions, denoting the integral on L!
with a superscript:

! L
f liminf[|g, (x)| + f,,(x)] dx < liminff |gn(X)|+ [ (x)dx
X = n—oo [Jx

The integrand on the left hand side converges pointwise
a.e to |gp(x)| = f(x). Note: If the integrals involved are
L* integrals, we cannot subtract |g,(x)| on both sides, as
+ f,,(x) may not be non-negative; however we have fixed it
by considering an L! version of Fatou’s Lemma.

Ll
if f)dx < ligninf

X X

the difference of integrals within the limit is controlled by

the error
L! L
f Ign(x)ldx—f lg(x)|dx
X X

and this proves the statement for real f,,. If f;, is complex
valued, we recall that:

—»0,

* A sequence of complex numbers (z,) < C converges
to ze Ciff Rez,, — Rezand Imz,, — Imz.

e The real (resp. complex) part of the integral of an L'
function f is the L! integral of the real (resp. complex
part) of f.

The hypothesis of the real DCT is satisfied for Re f (resp.

Im f), so that Ref)f1 fu(x)dx — Ref)f1 f(x)dx (resp. imagi-
nary part), and this proves the claim for complex f;,.

Ex. 2.21) Let f, — f a.e., and [|*||f,; — l*l fi. Then, for
all n =1, |fp—fl = Ifal +1f]. The right hand side of the
previous estimate — 2|f| a.e., with [|f,|+1fl — 2 [|f] so
that [|f, — fl — 0 by Ex. 2.20. Conversely, if [|f, - f| —
0, for almost everywhere x we have ||f,(x)|—|f(X)|| <
| fn(x) - f(x)| € L*. Using the L! inequality:

[ gt~ [1£1dp = [11£al = 1f1ap

which is bounded above by liminf [ | f,, — f| = 0. [ |

3.3. Convergence in Measure

Definition 3.5

Let f, f be complex-valued measurable functions on
X.

convergence in meas. forall e >0, u(E(|f, - fl, €)) —
0, where E(¢p, €) = {xe X, |p(x)| = €}
cauchy in meas. foralle >0, u(E(|f, — fml, €)) — 0as
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m, n — oo.

Proposition 3.6

Folland 2.30a If f;, — f in measure, there exists some
subsequence f,, — f a.e.

Folland 2.30b If {f,,}{° is Cauchy in measure, there ex-
ists a measurable f, f; — f in measure; and a
subsequence f, — f a.e. If also f;, — g in mea-
sure, then f =g a.e.”

Folland 2.29 If f,,, f € LP, p € [1, +00), ||*||fn—fp —
0, then f,, — f in measure.

Folland 2.31 If f,,, f € L}, ||| f, — f, — O, then there
is a subsequence f,,; — f a.e.

%this f is the 'best possible’ representative of the cauchy in mea-
sure sequence

Proof. 2.30a) Let f, — f in measure, {c;}, {dj} € ' nI*".
Pick an increasing sequence of numbers {r;} such that

sup W(E(fm—fl, dj)) =cj, E(g &)={xeX, |gx)|=¢e}

>n.
m_n]

Set Aj = E(lfy;— fl, dj), so that {u(A))} € I' and E =
(limsup A;)€ has y-null complement. Forany x€ E, x ¢ A;
eventually, meaning there exists j, € N* such that for all
J=zJx

sup | fp; (x) - f(X)| < dj,.

JZ]x

Sothat f,, — f ae.
2.30b) See book.

2.29) Modify the proof in the book (I don’t know if this is
true yet for p > 1)

2.31) Use 2.29 with p =1, and 2.30a. [ |

Proposition 3.7

Ex. 2.33 Let fy,, f € L*, and f;, — f in measure, then
J fdu <liminf [ f,dpu.

Ex. 2.34 Let f,,ge L', and |f;| < g, if f, — f in mea-
sure, then fe L' and [ f,du— [ fdu.

Ex. 2.34 Boosted? Let f,,gn,g€L!, g, —gae., f, —
f in measure, | f,| < g, a.e.,and [ g,du— [ gdp.
Then, fe L', and [ fdu— [ fdu.”

1 dont know if this is true.

Proof. Ex. 2.33) If liminf [ f,du = +oo, there is nothing
to prove. Otherwise, there exists a subsequence f — f
in measure, such that liminf [ fydy = liminf [ f,du. By

Proposition 3.6, there exists a subsequence g; such that
gj — [ a.e., and by Fatou’s Lemma

ffdusliminffgjdp:lirninfffndu.

Ex. 2.34) f is in L', because we can pick some sub-
sequence f,; — f a.e., and S1fldu < liminfflfnjldu <

liminf [ g, dp < [ gdu. Since [1gal — [Igl, I*1gn— 8 —
0 and g, — g in measure by Folland 2.30a, so that

fg+fd,usliminffgn+fndy

Suppose f;, is real valued, because 0 < f, + g — f+ g in
measure,

ff+gdus (liminfffnd,u)+fgdy,

Subtracting [ gdp from both sides, and repeating the same
argument with g — f;,,

[ o~ [ rau

This proves the case for real-valued f,. If f;, is complex
valued, and f;, — f in measure, thenRe f;, = Re f,Im f;, —
Im f in measure. The previous argument on the real and
imaginary parts proves the claim. |

3.4. Signed Measures

Let (X, M) be measurable space, a signed measure on
(X, M) is a set function v : M — R that satisfies the three
properties laid out in the book. There is a lot to be said
about how properties 2 and 3 interact with each other.

3.4.1 Rearrangements

If x € R, set x* = max(x, 0) and x~ = max(—x, 0). Fix {xp} c
R, the sum s = }{°x, is independent of rearrangements
if and only if at most one of s* = ¥{°x5; is unbounded.
This is a consequence of Riemann’s rearrangement theo-
rem. Without loss of generality, if the "positive’ part is un-
bounded, and the negative part is bounded, then every
rearrangement (grouping) must converge to +oco. If both
parts are bounded, then the series converges absolutely.
This, by definition forces the equation v(UE;) = X v(E;) to
be independent of how you choose to order the union and
sum. We also see that, if v(A) = +00, and B 2 A, measur-
able, then v(B) = v(A). This means the measure v(X) al-
lows us to detect which part of v (the positive or the nega-
tive) is unbounded.

3.4.2 Kernel of a Signed Measure
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Definition 3.8

Let v be a signed measure, for any E € M, we write
ng(A) = v(En A) with the same domain as v.

M = {EeM, +ng is a positive measure on M}

The elements of M are called the positive (resp. neg-
ative) subsets of v. The kernel of v is the collection

Ker(v) = {E € M, ng is the zero measure on M}.

Verify that the two definitions are the same as in
the book.

Proposition 3.9

Let v be a signed measure on (X, M), then

 If Eis in MZ, so is any measurable subset of E.

o If {E;}° < M7, then UE; € M.

Proof. Folland Proposition 3.2. [ |

The kernel of a signed measure v is equal to M} nM;,.
Then the two statements in Proposition 3.9 also hold for
Ker(v). This discussion will prove to be rather important
SO we restate:

Remark 3.10

Let v be a signed measure, if E € Ker(v), so is any mea-
surable subset of E. If {E;}{° < Ker(v), then UE; €
Ker(v).

We turn to mutual singularity and absolute continuity. The
former is refers to the ability to separate one signed mea-
sure from another and should be interpreted as some a
"Hausdorff’ condition. Absolute continuity on the other
hand, has to do with 'where’ the measure is supported. We
state our two of our new and improved definitions at once.

Definition 3.11
Let v, u be signed measures,

e v L uiff there exists A € Ker(v) such that A€ is in
Ker(w),

e v < puiff Ker(u) < Ker(v).

Verify that the two definitions are the same as the
book.

It is useful to remember that if v is a positive measure, then
v(E) = 0iff E € Ker(v).

* v<uiffv; < uforall j,

e v 1piffv; L pforall j.

Proof. We first prove M°Ker(v;) = Ker(v). Fix E € Ker(v),
because v; < v for j = 1, E € Ker(v;). Conversely, if E is
an element in the intersection, then v;(E) =0 forall j. By
taking the supremum over finite subcollections of indices,
we see that v(E) = 0 and E € Ker(v).

The second claim is an easy corollary of the first, because
the subset condition is passed onto the individual mem-
bers in the intersection. For the third claim, one direction
is immediate: if v L y, then we find some A € Ker(u) such
that A° e N{°Ker(v;). The reverse direction is a bit tricky,
and involves constructing a measurable subset on which v
vanishes.

For every j = 1, let B; € Ker(v;) such that B]C. € Ker(y). By
Remark 3.10, their intersection B = (1B; must be an ele-
ment of Ker(v); and by using Remark 3.10 again, we see that
its complement, B¢ = UB]? is in Ker(u) therefore v L y. W

The following is almost trivial but goes to show how useful
this new perspective is.

Proposition 3.13 Exercise 3.2, 3.8 Boosted

Let v be a signed measure, then Ker(v) = Ker(|v]). If u
is another signed measure, then

o v piff |v] < |pl iff v < p,
o v wiff|v| L |uliff v Ly,

If v, p1, o are finite signed measure s, p = pj + po.
Then v L u; (j = 1,2) implies v L p. The converse
need not be true (take py = —pp); butis true if gy L po.

Proof. The first claim is immediate because of the remark
preceding Proposition 3.12. Since v < p and v L u are
characterized using the kernels of the two signed mea-
sures, the first equivalence is clear, and the second equiva-
lence follows from Proposition 3.12. [ |

3.5. Complex Measures

Definition 3.14

u:M — C is a complex measure if y(@) = 0 and
u(UE;) = ¥ u(E;) for disjoint {E;}, where the sum con-
verges absolutely.

Proposition 3.12 Exercise 3.9 Boosted

Let {v j}‘l’o be a sequence of positive measures, and v =
> v;, then N°Ker(v;) = Ker(v). Moreover,

3.5.1 Decomposition of Complex Measures

Let ¢;:C— [0, +oo) with ¢y (a+bi) = a*, pa(a+bi)=a",
@3 = b*, ¢4 = b~ where a,b are real numbers and
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x* = max(x,0) and x~ = max(—x,0) are the positive and

negative parts of a real number x.

For j=1,...,4,¢;(0) =0, soif f: X — C is any measurable
(resp. continuous) function, and S r=ixeX fx) # 0},
because f(x) =0 implies ¢ ;o f(x) =0, so that

S(,DjOfgSf'

Moreover, ¢ o f is measurable (resp. continuous), and if f
is continuous and has compact support, so does ¢; o f for
all f.

Also, if ¥ : [0, +o0)* — C is the recombination mapping,
meaning y(ay,az,b1,b2) = (a1 — ax) + i(by — b)), then
1[/(611, az,b1,b) =0 implies (a1 —ap) =0and (b — by) =0.

Let fj: X =R (j=1...,49, v(h,...fa) =F. Ifxe
r1‘1l f] ~1(0), it is clear that F(x) = 0. Now let us introduce a
'disjoint support’ condition. If S; = supp fj, suppose

S1NS, =@ and S3nNS;=3,

then F(x) =0 < xen] fj—l(O). Indeed, F(x) =0 =
filx) = fo(x), and f3(x) = fa(x). It is impossible for the
expressions to be non-zero, because the disjoint support
condition means the diagonals of the images are (0,0).

Is every complex measure the (complex) span of
positive measures with pu(X) = 1?

4. Point Set Topology

Let (X, T) be a topological space, we call the elements of T
open and write U € X tomean U € 7. If E € X, its subspace
topology T is given by the intersection with open subsets
of X,and V € Erefersto V € T5.

A neighbourhood of x € X is a subset E € X such that x €
U < E for some U € T; and the set of neighbourhoods of x
is N'(x). Replacing x with A< X, E € N(A) (meaning E is a
neighbourhood of A) if there exists U € X with ACUCE.

Prove N(A) = NyeaN(x), and N({x}) = N(x).

Often it will be useful to consider open neighbourhoods of
xand A. We define N(x)° =N(x)nT, and N(A)° = NA)NT.

4.1. Adherent Points

An extremely important concept in topology is the ad-
herent point. An adherent point of A < X is x € X where
every neighbourhood of x intersects A. This means that
x is 'stuck’ to A and one is unable to separate x from A

by taking smaller and smaller neighbourhoods about x.
We immediately see that the set of adherent points of A is
closed, and is equal to A.

The boundary of A, denoted by dA consists of the points
in x that adhere to both A and X \ A. One thinks of A as
being 'stuck’ between A and X\ A.

4.2, Separation Axioms

We now contrast the previous section with the notions of
separation. Suppose E € N(x) satisfies An E = &, we find
an open U € X where x € U € A°. Viewing (U, Ty) as a
topological space, it contains none of the points in A, and
motivates

Definition 4.1
E € N(x) separates x from A whenever ANE =@.

For any open U, x € U and y ¢ U, N(x)° separates x from
{y}, equivalently: points that inside U are separated from
those that are outside.
Definition 4.2

The space X is T} if N(x)° separates x from {y} for all
x,y€X.

We can generalize Definition 4.1, by saying that E € N(A)
separates A from B € X whenever EN B = &. We say that
x, Ais disjoint if {x}, A is. The axioms T», T3, T4 are symmet-
ric, and we will describe them at once.

Definition 4.3

T» X is Hausdorff if every disjoint pair x, y can be sep-
arated by disjoint open neighbourhoods of x, y.

T3 X isregular if singletons are closed, and every dis-
joint, closed pair {x}, A can be separated by disjoint
open neighbourhoods of {x}, A.

T, X is normal if singletons are closed, and every dis-
joint, closed pair A,B can be separated by disjoint
open neighbourhoods of A, B.

Draw a picture describing the separation axioms
T; fori=0,1,2,3,4.

Remark 4.4

The requirement that singletons are closed means
Ty = T3 = T, = T;. The topology of X is T3
(resp. Ty) iff it is Hausdorff but one (resp. both) of the
singletons can be replaced with closed sets.

Prove X is regular iff for all x € V € X, there exists
U € N(x)° such that x e U € U < V. State and
prove an equivalent condition for Tj.
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The separation axioms describe how close X is to being
a metric space. If X is a metric space, for all x e V € X,
we can easily find r > 0 such that x € B(r,x) € B(r,x) € V,
so every metric space is regular (X is actually normal, see
Exercise 4.3).

We conclude this section with a weaker notion of adher-
ence: A accumulates at x if no neighbourhood of x sepa-
rates x from A\ {x}.

Prove x adheres to B iff no neighbourhood of x
separates x from B.

Prove x € acc A iff x adheres to A\ {x}.

4.2.1 LSC Topology

4.3. Directed Sets

The family N(x)° (more generally, N(x)) becomes a di-
rected set under reverse inclusion. A neighbourhood base
at x is a cofinal subset of N(x)?; and it represents a smaller
(possibly better-behaved) subcollection of N(x)°.

Compare the definitions for directed sets, cofinal
subset (see Exercise 4.30a) with the definitions
and conditions laid out on p. 114 - 115.

In particular, if M(x) is a neighbourhood base at x, then
it suffices to check that certain topological properties hold
for M(x) to deduce that it holds for N(x).

Prove x € A (resp. accA and resp. dA) iff no
neighbourhood U € M(x) separates x from A
(resp. from A\ {x} and resp. from A or from X\ A)

Remark 4.5

X is Hausdorff iff every pair x, y can be separated by
disjoint sets in M (x), M(y). A similar statement holds
for T3. In addition to the characterization above, X is
T, if all of its two point subsets are disconnected (see
Exercise 4.10) in the relative topology.

If M(x) is a neighbourhood base at x for all x, the union
M = uyM(x) is a base of X; and X is said to be second
countable if M can be taken to be countable. Finally, E < X
is a neighbourhood of x iff U < E for some U € M(x), and
because E is open iff E it is a neighbourhood of every x € E,
we have an important characterization of open sets

E is open iff it can be written as the union of sets
in .t

11n some sense, knowing M implies knowing the entirety of 7.

4.3.1 Nets and first countable spaces

We will state and prove an extremely useful characteriza-
tion of the adherent points of A which generalizes Propo-
sitions 4.6 and 4.18.

Proposition 4.6

Let M(x) be a neighbourhood base at x, then x ad-
heres to B iff no neighbourhood U € M(x) separates
x from B iff some net (z4)qenix) S B converges to x.
Specifically, if x admits a countable neighbourhood
base, then x adheres to B iff some sequence in B con-
verges to x.

Proof. We have proven the first equivalence. Suppose x
adheres to B, we associate every neighbourhood V € M(x)
to an element zy € V N B. To show that zy — x, fix any
open neighbourhood U € N(x)?, because M(x) is cofinal,
there exists V € M(x) such that V € U, and for all V' > V,
zy € V' 2V 2 U. So that zy — x. Now suppose V € M(x)
separates x from B, then no net (z4)qc4 S B can intersect
this neighbourhood of x.

By the first paragraph of page 116, if M(x) is countable,
there exists a neighbourhood base {U;}{° at x which is well-
ordered, countable M(x) = {U]’.‘}To, such that U;j 2 Uj4;1.
Picking z; € U; N B finishes the proof. |

The previous proposition motivates the following descrip-
tion for topological spaces in which the notion of is char-
acterized by sequences.

Definition 4.7

X is first countable if M(x) can be taken to be count-
able and decreasing for all x.

4.4. Dense Sets

We say that A is dense in X whenever ‘A = X, this means A
has the property that for every point x € X and neighbour-
hood E, En A # &. Furthermore, A is dense in X if and
only if every non-empty open set intersects A.

More generally, A is dense in U & X if Un A = U, Exercise
4.13 states that A < X is dense (in X) iff it is dense in every
open subset. Naturally, A is nowhere dense in U € X if A
is not dense in all V € U. See Theorem 5.9, it is extremely
important in functional analysis.

Definition 4.8

TJo=1{U € X, U # &} the family of all non-empty open
sets.
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Definition 4.9

A subset A € X is nowhere dense if Un A = & for all
Ue ‘To.

Proposition 4.10

Show that A is nowhere dense iff A° = .

Proof. Suppose A is nowhere dense, then Un A = & for all
UeTp,andUNA’ =2, [

4.5. Continuity

The reason why the proof of Tietze’s Extension Theorem
works is because the norms of {g;} form a summable se-
quence. This is a technique which essentially boils down
to an induction along with a limit process as long as we can
approximate small elements in one space by sufficiently
small elements in another space. See Lemma 5.5

4.6. Metric Spaces

Definition 4.11

A metric space is a pair (X, d) where X is a set and a
metric function d : X x X — [0, +00)

positive definiteness d(x,y) =0iff x =y,

triangle inequality For all x;,x2,z € X, d(x1, x2)
d(xl, z)+ d(xg, Z).{Z

diameter diamE =sup, ,cpd(x,y) for Ec X
cauchy sequence {x,}, where diamE, € cy, E,
{Xm, m=nj.

complete metric space every cauchy sequence ad-
mits a limit to which it converges

IA

%see Lemma 1.5

Proposition 4.12

distance to sets Let Ac X, and ds(x) =inf,c 4 d(x, 2),
then dy, is Lipschitz continuous, and d4(x) = 0 iff x €
A.

first countable, normal X is a first countable normal
space.

shrinking diameter If x € U € X, there exists £,y >0
such that for all ¢’ € (0, £ ],

x€B(e, x) B, x) cU.
Meaning the ball about x can be taken to be arbitrar-
ily small. If X is a complete metric space, then every

closed set A is again a complete metric space with the
metricd|s: Ax A— [0, +00).

Proof. Let x,y € X, for every ¢, by the second property of
da(x)

dy, ze) <d(x, zg)+d(y, x) =ds(x)+d(y, x)+e.

So that d4(y) < d(y, x) + da(x), reversing the roles of x, y
gives

lda(x)—da(y) =d(x, y).

It is clear that if x € A, then forall € > 0, B(¢, X) N A # &, so
inf,ec 4 d(x, z) = 0. Conversely, if given € > 0, by the second
property of d4(x),

d(x, zgp1) <da(x)+e2 ' =27 <.

So that B(e, x) N A# @ and x € A. [ |

4.6.1 Baire Category Theorem

Definition 4.13

first category / meager X is the countable union of
nowhere dense sets.

second category X is not the countable union of
nowhere dense sets.

residual / comeager complement of a meager subset
of X.

Proposition 4.14 Baire Category Theorem (Complete
Metric Spaces)

If X is a complete metric space, and {Uy}{° open and
dense in X, then N{° is dense in X. Moreover, X is of
the second category.

Proof. If X is a T3 space, for every x € U € X, we can find
Ve € X,

xeVecV,cU.

If X is a complete metric space, diamV, can be taken
to be arbitrarily small and V, is again a complete metric
space in the subspace topology. Let {c,} € ' n I**, we will
construct a Cauchy sequence by induction. Given a non-
empty W € X, set

x1 € X, §Y1 cWnU
where diam X; < ¢;.

Is it possible to use Folland Exercise 4.132 Because V is
another complete metric space, and U; N Vy is dense in V,?
I am not sure.

Notice that W n X, is non-empty, open |
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4.7. Proper Mappings

Let X be a set and x < P(X) be a family of subsets of X such
that & € kx, and « is closed under arbitrary intersections
and finite unions.

Let X be a topological space and k be the set of all compact
subsets of X. If f: X — Y is a continuous mapping into a
o-compact Hausdorff space, and {Up,}{° is a -compact ex-
haustion of Y, then f is a proper iff f~! (ﬁnk) € x for some
subsequence ny.

Lemma 4.15
Let X,Y be topological spaces and f € C(X, R), g €
C(Y, R) proper. If at least one of X or Y is compact, or
both f, g are bounded below, then h = f + g is contin-
uous proper.

Proof. If the first alternative holds, fix a compact K € R,
since addition is completely continuous, K = K — f(X) is
also compact. g is proper map, so X x g~'(K) is com-
pact. It suffices to show YK c X x g‘l(I?). Suppose
(x,y) € h™}(K), then x € X is clear. Because f(x)+g(y) € K,
it means g(y) € K - f(x) € K, or y € g1 (K). By continuity,
h~1(K) is a closed subset of a compact set in X x Y, there-
fore it is compact and £ is proper.

If the second alternative holds, it suffices to show that
h=1([-b, +b)) is compact for all b > 0. Because f,g are
bounded below, there exists aj,a; > 0 such that —a; <
infy f(x) and —a; < inf}, g(y). Forany (x,y) € h™'((-b, +b))
we have

f)<b-g(y)<b+ay.

Similarly g(y) < b— f(x) < b+ aj, hence h™'([-b, +b]) <
fY(~ay, b+az)) x g~ ([-az, b+ a1]) and his proper. W

5. Functional Analysis

5.1. Operator Norm

Sp={xeX, |x|=p}
By={xeX, |x|<p}
Bp={xe X, |x| <p}

One should view these sets and their geometric structures
as being inherited from the structure of [0, +00). For any
non-zero element x € X, we can normalize ”—;” =1, itisalso
clear that

px

. 0}.
i ¥

Sp=1{px, lx|=1} ={

5.2. Seminorms

Definition 5.1
A seminorm on a vector space X is a function p: X —
[0, +00) satistying:

px+y) <px)+p(y) and p(ax)=|alp(x) VYaeC.

The zero-set of a semi-norm p is always a subspace. To see
this, define po ={xeX, p(x)=0}. Fixa,B € Cand xp,x; €
p°. By the triangle inequality and absolute homogeneity:

plaxo+ Bx1) < lalp(xo) +Blp(x1) =0.

We begin this section with a discussion about the geomet-
ric properties of convex subsets of R. Let ¢ > 0, and M, =
[0, ¢) be the open convex interval in R* = [0, +00). If x, yin
M., t€ (0, 1), their convex combination z; = (£)x+ (1 - 18)y
clearlylies in c.

zt<()c+(Q—-1tc<c.

Let a € [0, 1], for any x € M., ax is also in M,. So that ev-
ery point in M, contains a straight line segment to the ori-
gin. Next, for every x = 0 there exists some large a (by the
Archimedean property) such that

0O<a'x<ec.
We see that the infimum below is finite for every x = 0.
infla, a 'xe M.} =xlc.

It is useful here, to remember that convex subsets of R are
precisely the intervals. Now conversely, let C € R* be an
open (relative to R*) convex subset containing the origin.
First, literally by definition it is convex. Second, because
[0, €) < C for sufficiently small €, every point x = 0 can be
dilated so that @ ' x € C. We define, as in the book

p:R" -R" px) =infla, a 'xeC}.

In the one-dimensional case, it will turn out that p com-
pletely captures the geometric structure of C. The mental
picture should be the following, for a fixed x > 0, as one in-
creases @, the number a~! x moves to the left. The quantity
p(x) smallest a such that it enters the interval.

Proposition 5.2

Forr,x=0, p(x) <1liffxe C, p(rx) =rpx), p(x+y) <
p()+p(y).

Proof. We will only prove the triangle inequality. We en-
courage the reader to try out this simplified case, keeping
the proofs as simple as possible because there is actual ge-
ometric insight in the theorems themselves. There is a gen-
eral framework of proving estimates of the form:

Gqx+y)<qx)+q(y) q(z)=infZ,.
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One starts from the right hand side of the estimate, and
approaches the two infima from above ¢; > 0 (j = 1,2)
and obtain ¢; such that ¢; < g(x) + €1, similarly for y. If
the two quantities ¢, ¢, produces ¢z < ¢; + ¢», for some
3 € 4y, then the estimate will be proven.”

If x/[p(x)+e€], y/[p(y)+€] are in C, how can we produce (x+
y)/constant € C? The first attempt would be to use the fact
that for every point in C contains a straight line segment to
the origin, so we let r = max(p(x), p(y)) +¢, then

xr_l,yr_leC hence (x+y)/(2r)eC,

because (x + y)/2r is the midpoint of a line segment. This
proves p(x + y) < 2max(p(x), p(y)). Which is not what
we are looking for unfortunately. Let us try again, the
first step of the proof is obviously tight. Given the infor-
mation we have so far about x,y and the subset C, we
should not be able to deduce a better estimate. The cul-
prit is in the second step, where we have made the choice
of r = max(p(x), p(y)) +¢. If p(x) < p(y), the maximum
of the two will be a terrible choice. We need an algebraic
result.

Given two positive numbers, the reciprocal of
their sum lies on the line segment joining the two
reciprocals. In short,

Ya,b>03ty € (0, 1), (a+b) "' = toa ' +(1—to) b~ L.

Which is exactly what we want. 3 This means, if r = px)+
p(¥) +2¢, then &ry € C and the claim is proven. ]

The functional constructed above separates the C from its
complement by considering the sublevel set {p < 1}. For
the general case where C is an open, convex subset of a
Banach space containing the origin. The main ideas are
the same, p is positively homogeneous, subadditive, and
C = {p < 1}. However, we lose the property of distinguish-
ing individual points, because dim E = 2. The functional p
as constructed should be thought of as the radial’ compo-
nent of a certain kind of 'polar’ decomposition of a Banach
space — one which the radial component measures how
much you should inflate C to contain a point.

Furthermore, if we allow ourselves to place stronger as-
sumptions on C, meaning C is absorbent, balanced and
convex, then every seminorm p is of this form. It fol-
lows from the previous discussion that for all ¢ > 0, the set
M={x<pc}

2this is used in Ex 5.12, 6.2, 6.3. Chapter 7 many times, often with sup
instead of inf

3This algebraic lemma above underlies much of Chapter 6 and Har-
monic Analysis.

* is convex,
e is balanced —forall xe M and |a| <1, ax € M, and

e is absorbing (Archimedean) — for all x € X there exists
@ > 0 such that a ' x € M for « € (0, @). Moreover,

px) = inf{ac, alxeM,a> 0}.
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5.3. Factor Spaces

Closest distance Let X be aR or C nvs and S a subset of X.
Define gs: X — [0, +00) to be the map gs(x) = inf esllx—2z],
which computes the closest distance one can get to the set
S. We claim that x =, 0 iff x € S. The (<) direction is
clear, so fix ¢ > 0 and z. € S where || x—.|| <& so that x € S.
Seminorm to Norm on Factor Space Let X be a R or C
vector space and p : X — [0, +o0) a seminorm on X, set
M = {x =, 0}. Then p': X/M — [0, +00) is a norm on X/M
with p’(x+ M) = p(x) for all x+ M € X/ M.

First, we show that p' is well defined. Fix x+ M € X/M and
forall y € M, then

px)—p@) <px)=p(x+M) < px)+pQy).

Set xo + M and x; + M € X/M, and the triangle inequality
follows from

P’ ((x0 + x1) + M) = p(xo + x1) < p' (30 + M) + p' (x1 + M).

Similarly, if « is a scalar, then the homogenity of p’ follows
from that of p: p'(ax+ M) = p(ax) = |alp(x).

Norm to Seminorm on Factor Space Let M be a subspace
of nvs X, then gp(x) = infzepllx — z|| is @ seminorm on
X/M.If M is a closed subspace of X, then g, is a norm.

For all x + M € X/M, we can 'define’ its norm by a de-
scending sequence of elements in M, so that (z,;) <M and
lx+ z,ll \\ lx+M]|. We do Exercise 12 first. Let ||| be
anorm on X, fix x+ M and y+ M in X/M, suppose also
x —y € M, we want to show that the equation defines the
same number. If || x + z, || \\ I|x + M]||, then

Ix+zp—(x=pI=ly+zullz inf ly+zl=lylx/m
zeM

Taking the limit inferior on both sides, we see that
liminf|| x|l x,7 = ¥l x/n. Now we relabel (z,) € M and
note that y—x e M, if |y + z, || \\ |y + M|, then

ly+zn—(Q—=x)=l1x+2z,ll = inf |x+zll = lxll x/M7.
zeM

So that the quotient norm as defined above is independent
of the representative being used. Note that the quotient
norm is non-negative, as forall xe X,ze M, ||x+z| =0, so
the infimum over all such z is again non-negative.

Verification of the triangle inequality. Fix x,y € X and
(zn), (z;) € M with [lx + 2l \ lx+ Ml and [ly + z, [l
lly+M]||, for a fixed n = 1, we can apply the triangle inequal-
ity and take limits as follows:

[x+y)+MlI<lx+y+(zn+2z)ll
< llx+zull + 11y + 2z, = lx+ M|+ [y + M].

Verification of Homogeneity. Fix x € X and a € C, we can
use the same sequential technique and pass the algebraic
properties (as long as they are continuous under the limit)
to each of the terms in the defining sequence.

la(x+z)l = lallx + z,ll \ lalllx + M.

The limits converge and multiplication is continuous,
hence we don't need split this proof into two estimates.

Verification of positive semi-definiteness. It is clear that
gm =0, and for all x e M, gp(x) < |lx— x|l =0, so gpr is a
seminorm.

Verification of positive definiteness if M is closed. Suppose
that x € X is a point where || x + M| x;5¢ = 0, so we there
exists a sequence (z,) € M with

xl[x+2z,ll O, iff [lx—(=zn)l—0

and x € M because M is closed.
Note 5.3

Just to make this clear, M is closed is necessary for the
following claim

||X+M||X/M=0 = xeM.

Proposition 5.4

Ex5.12b Let X be a Banach space, and M # {0} a
closed subspace of X, and X/M the factor space. For
every € > 0, there exists x+ M € X/ M, ||x||x+ M =1-¢,
and z€ X, ||*|lz=1, such that z+ M = x + M.

Proof. Intuitively, an element x + M € X/M is approxi-
mated by sequences of (x,,+m;,) where x, € X and m, € M,
where m,, should be thought of a small perturbation away
from the equivalence class x + M. These sequences need
not converge of course. For any fixed n=>1,

Reduce it to the case where: for every x + M € X/M with
l*#]lx+M =1-¢, we can find z € X, with |*||z = 1, such
that z+ M = x+ M. This is different than what is asked in
the question, because ¢ depends on x + M. We are allowed
to do this because X/M # {0}, so for every € > 0, we can al-
ways find some element x+ M whose quotient norm is 1—¢.

The quotient norm of x + M is strictly smaller than 1, this
means we can fit a small perturbation of size at most 6,

where § € (0, £271). There exists y € X, m € M:
zs=y+m and |*llzse[l—¢g, 1-€+0]

If M # {0}, we can assume that m # 0. Indeed, pick a e M
with || *]|a # 0, then

[*llzs +a<ll*lzs+lxlla<(1-€e+6) +|x*la.
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Because || x| a is at our disposal, and can be made arbitrar-
ily small, we can replace m with a, if m = 0. We will exag-
gerate the M-perturbation by using the line segment

[t +lim =Nyl < Il*ly+ tm.

So that || *||y + tm — +oo for large ¢, and by continuity we
obtain 7y > 1 where z = y + fom has norm 1. Finally, if M =
{0} then X/M = X. [ |

5.4. Successive Approximations

Invertible Operators The set of invertible operators is
strongly open.
Graves The set of continuous linear surjections is
strongly open.

5.5. Geometric Arguments

Lemma 5.5 Method of Successive Approximations

Let X,Y be Banach spaces, and T € L(Y, X). A subset
Y C Y is said to satisfy the reverse Lipschitz criterion
for X if there exists C > 0, y € (0, 1), for any € > 0 and
lxlx <e,

¢lly < Ce,

Then, T is a surjection from {y = Z‘l’°¢j, {II*llp;} €
i ¢; € Z}. That is, every x € X can be written x =
T(y); this element ¢ = }-{°¢; can be taken to satisfy
lyll < Cllx|l(1 —y)’l. Moreover, if X' satisfies the re-
verse Lipschitz criterion for a fixed ¢’ > 0, then X =
{cd, ¢ >0, ¢ € X} satisfies the criterion for all € > 0.

x—T¢}llx <ye forsome ¢e.

Remark 5.7

How do dilations affect the sublevel sets of semi-
norms? What about translations? We can center the
sublevel at around a point xj to simulate some kind of
ball.

This will be useful when discussing the weak topolo-
gies generated by functionals.

Proof. Given x € X, we can find ¢; € X with ||¢; ]| < Cl x|
and [ x; || = | x|ly; where x; = x— T'¢;. Suppose x, x1,..., %,
have been chosen such that [¢;ll < Cllxllyf‘l, lx;ll <
lxlly’ for j =1,...,n. We find a small ¢p;,;; that improves
our estimate

Il =TT @) = T(Pne1) < llxnlly < lxlly™*,
lpns1ll < Cllxpll < Cllxly™ .

Let @ = Y.{°¢;, so that limy, || *[ly — Z’f(pj = 0. By continu-
ity and linearity of T

Il = Ty < lim inf|}|.x - TQ Ty = liminf|lx|y" = 0.

To prove the last claim, if x # 0, x’ = (¢/r~!)x has norm less
than ¢’ for sufficiently large r > 0. This induces ¢’ € ¥’
where ||¢|| < Ce/, and [|x' — ¢'|| < ye'. Multiplying by r
across the three equations and by linearity of T

Vixl <, 3xlp<CErn, lx—Tol<yE'r

forp=r¢’ €X. [ |

Proposition 5.6 Open Mapping Theorems
Let X, Y be Banach spaces, then every continuous lin-
ear surjection is an open map.

Manifold Every CP submersion (p = 1) is an open
map.

Lemma 5.8

Let X be aR Banach space and p : X — [0,00). For ¢ >0
we define

M(c, xo) ={x€ X, x—xo<pc} and Mi(c, xo) ={x€X, |

If p is absolutely homogeneous, meaning p(ax) =
|a|p(x) for all x € X, then for all a # 0,

aMy(c, x0) = M(lalc, axo),
and
aM(c, xo) = M(lalc, axp).

Suppose further that p is a seminorm (satisfies the tri-
angle inequality in addition to homogeneity), then

L—Xo <p C}.

5.5.1 Convexity

Remark 5.9

The convex hull of a subset M < X is conv(M) =
{7 tix', x* € M}. Convex Set — Wikipedia.

Remark 5.10
Let (£)7 € [0, 1], ¥t = 1 and (x;)} € X, then
IXT tix;] < max |x;].

Remark 5.11 Diameter is preserved

Let M < X and diam(M) = u < +oco. We want to show
diam conv(M) = diam(M).

Since M is contained in its convex hull, diam(M) <
diam conv(M). Let (;)} and (s;){"* be numbersin [0, 1]
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that sum to 1, then

n m

Ztix,- —Zsj‘yj) SZS,‘Z']‘DC,' - ¥jl S/JZSitj.
1 1 i,j i,j

The sum is equal to 1 by Fubini’s theorem. More gen-
erally, if x, are arbitrary elements in a normed vector
space X, then [|X £; x|l < max| x,|l.

Remark 5.12

A subset M is convexiff rx+(1—-f)y € Mforall x,y € M.
We prove this implies }_ t; x; € M for any convex com-
bination (¢;){ € [0, 1]. We can use induction. Suppose
for Y"1 t; x; € M for arbitrary n-convex combinations of
M, and fix nn + 1 elements (t,-xi){”l

5.6. Closed Subspaces

Definition 5.13 Split Subspaces

Let E be a Banach space, a closed subspace M < E is
said to split whenever there exists another closed sub-
space NC EwithMNN=0,and M+ N=E.“

“We remark that linear complements are not unique (easy to see
in R2, if x is any vector that spans a 1-dimensional subspace, then
span(y) is a linear complement of x provided that y ¢ span(x).

Proposition 5.14

If E; is a closed subspace of E that splits, where E; &
E;, = E,and E, is closed, then E; x E; Z E. ¢

“the congruent symbol = refers to a toplinear isomorphism.

Proof. Let A(x,y) = x+ y be the addition map, we equip
4 E) x E, with || (x, I = lxll+lyl. Follows from the con-
tinuity of the norm that [|A(x, p)Il = lx+ yll < ll(x, )]l is a
toplinear isomorphism by the open mapping theorem. W

Remark 5.15 Split subspaces allow for projections

An immediate corollary of the last theorem is that if E;
and Ej splits in E, there exists continuous linear maps
P;j:E—E;.

Proposition 5.16 Folland 5.2 Splitting

Ex5.18a Let M be a closed subspace, and x € X \ M,
then M + C is again a closed subspace.
Ex 5.18b Every finite dimensional subspace is closed.

“the following is equivalent to max(||x|l, Il yll), because max(llx|l, | yl) <
2(llxll+ Ly 1) < 2max (x| yID.

Ex5.20 Every finite dimensional subspace is closed
and splits.

Proof. 5.18a) If M is a closed subspace of X, and x € X'\
M, by Theorem 5.8a, there exists some f € X*, such that
f(x)=4,and f(M) = 0. Let {z,,} < M+Cx converge to some
z € X, we prove that z € M + Cx. By the continuity of f,

flz)d 1x— f(2)6 1 x.

Let yp =z, — f(z,)071x, and y = z— f(2)6 'x. It follows
that y, — y € M, because it is the linear combination of
two convergent sequences. Therefore ze€ M + Cx.

5.18b) Let M be finite dimensional with basis (ai)’f , We use
induction to show that M is closed. This is trivial, as the
base case @ is closed; and hence M is closed.

5.20) We now show M splits, for each basis vector, we can
construct the projection map ¢; : M — C onto the i-th co-
ordinate.’ Let ¢; also represent its continuous extension
to all of X. If z € X, we can decompose it into two parts:

z= (Zf(pi(zmi) + (z— Zf(pi(zmi)-

The second member is, almost by definition®, in the kernel
ofall g,

Pj (Z_ lec(pi(Z)di) = (pj(z) —Zf:l (pj((Pi(Z)di)
=i~ Y, 9i(26] =0.

We set N = nKer(¢;), which is a closed linear subspace of
X and the proof is complete. |

Proposition 5.17 Left and Right Inverses

Let T be a linear operator from E to F.

Left Inverse If T is an injection, T admits a leftinverse
iff the range of T is closed, and splits in F.

Right Inverse If T is a surjection, T admits a right in-
verse iff the kernel of T splits in E.

Proof. If T is an injection where T'(E) is closed and splits
in F with a subspace V € F. Let P: F — T(E) be the projec-
tion. Since Po T is a toplinear isomorphism, we denote its
inverse by W: T'(E) — E.

We construct the left inverse S : F — E, that projects y € F
onto T(E) then applies W (thatis, S(y) = W(P(p))). fx € E,

5the motivation for this is that linear functionals 'live on’ one dimen-
sion only, and we set (pi(aj) = 6{.
6 . . . .
where ¢ ; conveniently picks out the jth term amongall ;.
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then PTx = Tx because P is a projection (see [RomO07,
pp.74]) and hence STx = x.

Converselyif T admits aleftinverse S: F — E, we show that
its range is closed and splits.

Range of T is closed Let {Tx,} < T(E) be a convergent se-
quence in F. Because we have a left inverse in S, we can
send the sequence back into E. If Tx;, — z, then x, — Sz €
E, and hence Tx,, — TSz € T(E).

Ker(S) is the linear complement of T (E) For every z € F,
we decompose

z2=TSz+ (z—TSz),
where S(z—TSz)=Sz—STSz=Sz—-Sz=0.

If T is a surjection where Ker(7) splits, let P : E — Ker(T) be
the projection map. We construct a right inverse as follows.
We associate any y € F to the element x— P(x), where Tx =
y. " The mapping Sy = x — P(x) is a right inverse of T, as

TSy=Tx—-TP(x)=Tx=y.

Moreover, S is linear, as T'o Y4 (x;) = Y y; whenever y; =
T x;, and the linear combination factors out from idg x P:

A A AN A
S(Zyi) = (in —P(in)) =) (x;— P(x).
R R R R

Conversely, if T admits a right inverse S : F — E, we claim
that

Range of S is closed Suppose S(y,) is a convergent se-
quence in E, recalling that T is a surjection we can assume
STxp, = S(yn) — x € E for some sequence {x,} < E and el-
ement x € E. By continuity of T, we can send these points
into F

TSTx,=Tx,— TxeEFE

And hence STx;,, — STx € S(F).

Range of S is linear complement of Ker 7. Every z € E ad-
mits a decomposition z = STz + (z — STz), where member
in parentheses is in Ker(T), as Tz — TSTz = Tz— Tz = 0.
Suppose z € S(F) nKer T, then z = Sy for some y € F and
Tz =0; and hence

0=Tz=TSy=y implies 0=Sy=z.

6. L” Spaces

“two things: 1) such an x always exists, because T is a surjection. 2) this
is independent of x chosen. If Tx = y = Tz, then x and z differ by some
element in Ker(T), which is precisely the part we chose to 'trim’ from the
correspondence.

Proposition 6.1 Minkowski’s Inequality for Integrals

Let (X, M, @) and (Y, N, v) be o-finite measure
spaces. If f: (X x Y) — [0, +00] is a measurable map-
ping, then for every r = 1

(fx rdx)msfy(fxlf(x,y)lrdx)wdy

We say that the norm of the integral is
bounded above by the integral of the norms.

f fx,ydy
Y

Proof. Folland Proposition 6.19a

6.1. Retracts

Definition 6.2

Let Y be a topological space and E < X. A retract of E
is a continuous map r: Y — E such that r|g = idg.

Definition 6.3

If Y is a normed vector space, for any 6 > 0, the map-
ping pg: Y — My ={y €Y, |yl <0} is called the 6-
retract of Y.

@olm, =idy, and @p(y) =01y Ny Vye¢M,.

Definition 6.4
Let f: X — C be measurable, >0, and ¢g :C — M, =
{z € C, |z| < p} be the p-retract. The maps

fo=goof and f%=f-fy

are called the 8-retract and 6-tail of f.

Example 6.5

Let f(t) = t defined on R, its 1-retract is the map g(¢) =
max(—1, min(1, t)), while its 1-tail is k() = max(z —
1, 0) + min(z+1, 0)

6.2. Distribution Functions

Definition 6.6
Let f : X — C be measurable, its distribution function
is a mapping A ¢ : (0, +00) — [0, +o0],

Af(@ = p(ixe X, |f (0] > a}).

Example 6.7
Iff:X—C, f(x)=c, then A¢(a) = u(X)x, |c) (@).
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Proposition 6.8

Let f be measurable,
e Forall pe (0, +00), [Ix]If) = p J5° (@’ HAp(@)da
o If f € L%, supp (Af) = (0, [I*l fool.

e For0 >0,

A @) =xe,0(@Af(@) and Agp(a)=Ap(a+0).

Proof. See Folland 6.23 to 6.25. ]

7. Minimax Principles

Definition 7.1 Palais-Smale Condition

Let E be a real Banach space, and I € CHE, R). We
say that [ satisfies the Palais-Smale condition if every
bounded (meas. I) sequence {u,} < E with vanishing
gradient I'u,, — 0 admits a strongly convergent subse-
quence {u,}.

Remark 7.2

The induced strongly convergent subsequence con-
verges to a critical point of I.

Proposition 7.3 Mountain Pass Theorem
Let E be a real Banach spaceand [ € C L(E, R) satisfies
the PS condition. Suppose I(0) =0 and

¢ there exists p, @ > 0 such that IIaBP >a,

* thereis e€ E\ B, such that I(e) 0.

Then I possesses a critical value ¢ = a, where

c=inf max I(u),
gerg ueg((o, 1])

where FS ={geC([0, 1], E), g(0) =0, g(1) = e)} repre-
sents the set of continuous curves from 0 to e.

Two ideas in Proposition 7.3. First, we obtain an estimate
for ¢ (and c is finite). In this case we show c¢ € [a, +o0).
Second, using a deformation argument, if ¢ is not a critical
value. The time-one map of a modified pg field gives us

Proposition 7.4

Let E be a real Banach space and I satisfy the PS con-
dition. If c € R is not a critical value of I, for every € > 0
there exists € € (0, €) and i € C([0, 1] x E, E) such that

e The time-one map of 7 is supported within

I'Yc-%, c+E]).
N, w=u Vug¢l '(c—FE c+&l.
e The time-one map of ) sends Aq1, to Aq—;.

N1, Acte) S Ac—e-

Proof of Proposition 7.3. The first claim is easy to verify. To
show that ¢ < +00, we only have to show 1“5 # J, because
every continuous curve in attain their maximum (meas. I).
Take the straight line from 0 to e. By an intermediate value
theorem argument, every curve g € I'f must intersect 0B,,
so that g(#) = a for some fy. Hence max;c(o, 11 g(¢) = a for
every curve geI'f, and c = a.

For the second part of the proof, if c is not a critical value,
set £ = @2~!, we want a tightly supported time-one map
n(1, ) =n(-) with supp (n) I'Y(le—a27}, c+a271)).

More importantly, if g € I'¢, then n(g) is also in I'§. This is
because 7 is continuous, and the endpoints 0, e are non-
positive,

I({0,el)n[c—F, c+€] = 2.

Now, approach ¢ from above and obtain g € T¥¢,
max; 1(g(1)) < ¢ +¢, then g([0, 1]) € A4 and max;(no
g)(t) < c—e. This contradicts the definition of ¢ because
nogeTg. |

Proposition 7.5

Let E be areal Banach spaceand I € C LE, R) satisfying
PS. If I is bounded from below, then ¢ = inf,cg I(z) is a
critical value of I.

Proof. Because I is bounded below, c is finite. To illus-
trate why the proof above works, we let S = {{x}, x € E}
be the collection of singletons in E. It is clear that
¢ = infgegmaxy,cx I(u), and for € > 0, the deformation
map 7 : E — E is supported around I"Y[c-¢, c+&]) and
N(Acte) € Ac—e for some € € (0, €).

Find some z € E such that I(z) < c+¢, then maxn({z} < c—¢,
contradicting the claim that c is the global minimum. ®

Proposition 7.6
Let E,I,p,a,e be as in Proposition 7.3, set W =
{B<E, 0€ B, e¢ B} as the open neighbourhoods
about 0 whose closure separates 0 from e. Then,
b= sup inf I(w)
BeWw u€oB
is a critical value of I witha < b <c.

Proof. First we show a < b < c. We note that the infimum
is taken over points on the boundary of B. The open ball
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B, € W, and because IIaBp >qa,weseethata < b.

To bound b from above, Lemma 7.7 shows that g([0, 1]) N
0B # @ forany geI'; and B € W. Let w be a point of inter-
section as described above. Since w is on the boundary of
B, inf,c5p I(2) < I(w), and since w is a point on the curve g,
I(w) < sup,¢(p 17 1(g(1)). See 22 To show that b is a critical
value, we can use an alternate ) that moves along the pos-
itive gradient instead of the negative gradient of I. The im-
age f)(B) is open in E because 7) is a homeomorphism. B

Lemma 7.7

Let g € T{ = {g € C([0, 1], E), g(0) =0, g(1) = e}, and
BeW={B<E, 0€B, e¢ B}. Then X = g([0, 1]) inter-
sects the boundary of B.

Proof. Both ideas use the fact that given any open set U,
we can split the space into the disjoint sum

E=U+0U+U".

The firstidea is rather complicated and uses the continuity
of g to send boundary points back to boundary points in
[0, 1]. Because e ¢ B, we can draw some & > 0 about the
point e, and by continuity of the curve, there exists §' > 0
such that forall t€ [1-6', 1], g(1) € B(S, e) B’ = B®. To
this, let = = {t € [0, 1], g(¢') ¢ B V' € [t, 1]} be the set of
points such that once you pass ¢ € X, the curve no longer
goes back into B. This set is non-empty, bounded below
because t ¢ X for sufficiently small ¢. Let #y = infX > 0, we
can exhaust all of the possibilities.

If fy € B, by continuity: g(t+0") € B. If ty ¢ B, by continuity
again g(fop—0") ¢ B and we conclude g(tp) € 0B. The sec-
ond idea is much more straight forward, since X = g([0, 1])
is connected, it cannot be written as the disjoint union of
two non-empty open subsets BN X and B°°n X, and we
conclude 0BN X # &. [ |

7.1. Rabinowitz 4: The Saddle Point Theorem

In this section, we introduce the Brouwer and its infinite-
dimensional analogue, the Leray-Schauder degree. To be-
gin, O = {open and bounded subsets of R"}. Fix

Definition 7.8 Brouwer Degree

7.2. Rabinowitz 5: Some Generalizations of
the Mountain Pass Theorem

7.3. Construction of pg field

The following lemma is needed in Proposition B.1 in
[Rab86].

Lemma 7.9

For r,s € [1, +00), for every ay, a; > 0, there exists ag >
0 where (a; + a2|z|"'9)% < az (1 +|z|").

Proof. We can prove the existence of such an as by
considering the behaviour of the quotient g(f) = (a; +
a|t|”$)S/(1 +|t|") for t — 0 and t — +oo. By inspection
g(1) is continuous at 0 with g(0) = aj. For ¢t > 0, g(t) =
(@ 1t]7"S+a2)*/(|t]~" +1) which tends to a; as t — oo. Since
SUPe(0, 1Juln, +oo) & (1)1 is finite for large n, we conclude that
sup; =0/g(8)| = az < +oo. [ ]

8. Differential Equations

9. Radon Measures

In this section, X will be a LCH space.

Definition 9.1
Let U € X and K compact. If f € C.(X),0< f <1and
supp (f) € U € X, we write f S U.
[(K) ={f e Cc(X), f=yxk}
To(U)={feC.(X), f S U}

If E ¢ X, we write x(E) = {K < E, Kis compact} and
K =k (X).

The set of functions I';(K) and I';(U) satisfy the usual
monotonicity and their geometric properties as well,
which we will summarize. If K € K/, then I'1 (K") < T'1(K),
andif U c U’, then T»(U) cT(U"). If fi e T1(K), f2 € T2(U),

{feC(X), fzfiteT1(K)
{f€C(X), 0< f < fr} <TL(U).

I'; is closed under addition and dilations by ¢ = 1, while I'y
is a convex cone and is closed under addition whenever the
supports are disjoint, that is

If f1,f> € T2(U), and supp(f1) Nnsupp(fo) = &,
then fi + f> € T2 (U).

We call the second family of functions, the subordinates of
U, and will act as a family of lower approximants to p(U)
under the positive linear functional I,.

We note that if K is compact and K € U € X, and f €
I'(K)nT2U), then f=10onK, 0= f <1, and supp (f)
U; which is precisely the statement of Urysohn’s Lemma.

Lemma 9.2 Urysohn (LCH)
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If K compact, K € U € X, then there exists f € I'; (K) N
Iy (U).

Proof. See Folland 4.32. ]

The following is a restatement of Urysohn’s Lemma, which
means that the family of compact subsets of U € X satisfy
a certain 'cofinality’ condition.

Corollary 9.3

If {Ky} < x(U), where U is open in X, to each K, there
exists a compact superset K}, and f, € I'1 (Ky) NI (U).

Definition 9.4
R* =[0, +00), C.(X)* = Cc(X, RT).

Definition 9.5

A linear functional I : C.(X) — C (not necessarily con-
tinuous) is called a positive linear functional if I maps
C.(X)" into R*.

Proposition 7.1 in Folland says that given a positive linear
functional, for any compact K, the restriction of I onto the
subspace of functions in C.(X) with supp (f) < K is a con-
tinuous linear functional. This is some kind of 'local’ conti-
nuity, if we would like to equip C.(X) with a topology. The
proof of Folland 7.1 exploits the 'order’ structure for posi-
tive linear functionals, and a certain 'subtraction’ trick bor-
rowed from the proof of the dominated convergence theo-
rem.

Note 9.6

Real-valued quantities, if bounded below can be

‘transported’ through I if some positivity condition

is satisfied.

We can abstract this further. Let X be an ordered vec-
tor space and I a linear functional on X that satisfies
some positivity condition. See Krein Extension The-
orem for more. Of course this order structure has to
respect scaling by positive numbers.

Proposition 9.7 Folland 7.1

Let I be a positive linear functional, then for all com-
pact K, there exists Cg > 0 such that |I(f)| < Cxll*| fu
for all f € C.(X) with supp (f) € K.

Proof. Suppose f is real valued, because every complex-
valued function can be decomposed f = fi +if; for fj €
C:(X, R). The order structure of C.(X, R) and R can be
exploited as follows, using a 'subtraction ’trick.

(Nl fup = f) € Ce(X, R4).

So that || x|| fI(¢p) = I(f) by positivity and homogeneity. Re-

placing f with — f reads

(AT = TP fu-

Set Cx = 2I(¢h). m

Definition 9.8
Let u be a Borel measure on X, we say that E € M is

inner-regular p(E) =sup{u(K), K € E, K is compact}
outer-regular u(E) =inf{u(U), EC U & X}.

A Radon measure on X is a Borel measure that is fi-
nite on compact sets, inner-regular on open sets, and
outer-regular on all Borel sets.

Proposition 9.9

Let £ be a Borel measure, that is finite on compact sets.

Then C.(X) < L' (u).

Proof. Given f € C.(X), we have the infinity bound | fll,,
along with the 1-bound yx where K = supp(f). So

SIfldp < 1 fllypu@). m

Definition 9.10

If 1 is a Radon measure on X, we define I, : C¢(X) — C
by

L= [ fap.

Proposition 9.11

If p is a Radon measure, then I, is a positive linear
functional. For every open set U,

p(U) =supi{l,(f), fel(U)} 4

Moreoever, the correspondence p — I, completely
characterizes p: if v is another Radon measure and
I,=1I,,then u=v.

Proof. 1t is clear that I, is a positive linear functional. To
prove Equation (4), to every open set U we assign two func-
tionals:

pif 1,:T2(U) — [0, +o0),
compact subsets y:x(U) — [0, +00).

Because p is a Radon measure, it is inner-regular on open
subsets, so that p(U) = supge, ) #(K). If {Ky} € x(U) is
a sequence that increases to u(U) (meas. u), we can use
Corollary 9.3 to obtain f,, € I'1 (K,;) n T2 (U),

IJ(Kn) = Ip(fn) = IJ(U)
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So that our sequence of functions f, / u(U) (meas. 1),
and Eq. (4) is proven. If v is another Radon measure such
that I, = I, then the previous discussion shows that they
agree on open sets, and by outer-regularity: p=v. |

9.1. Riesz Representation Theorem

We turn to the Riesz Representation theorem for positive
linear functionals. Later we will introduce other versions
which will generalize this to non-positive linear function-
als.

If I is any positive linear functional, and K compact, the
infimum over all such Cg > 0 in Proposition 9.7 can be
thought of some kind of 'measure’ on the compact set K.
On the other hand, if U € X,

sup_sup{II@)1/I1*lpu, ¢ € Ce(X), supp (@) < K}
Kex(U)

which by homogeneity and linearity of I, is the same as

sup I(¢).
Ppel2(U)

Proposition 9.12 Riesz (Positive Linear Functionals)

Every positive linear functional I on C.(X) gives rise to
aunique Radon measure y such that I = 1,.

sup. over subordinates u(U) = sup{I(¢), ¢ € I'2(U)},
forU € X.

inf. over superordinates u(K) = inf{I(y), v € I'1(K)}
for K e k.

Note 9.13

The regularity conditions of I, and the regularity con-
ditions on a Radon measure, feels like the meeting of a
real-variable limit.

_inf sup I(¢p) = sup inf 1(¢)
U < X, ESU ¢ey; (U) K<E, K compact®€l2(K)

Note 9.14
More abstract approximation framework. Let Q be a
setand Xy < Q' for k=0,1 with

J) : Zk) — [0, +o0].
Suppose further to every x € Q, we are given a non-
empty X (x) € Z (k).

Ii Q) —

& Q= [0, +o0]

I(J;C) (%) = SUPges 4 (x) T (d)
L3y (%) = infges i ) Tk (D)

10. Fourier Analysis

10.1. Weak Topologies

Recall that if {Y,} is a family of topological spaces, and X is
any set, the weak topology induced by a family of functions
F ={fa: X — Y,} is the topology T consisting precisely of
{&5, X} and unions of finite intersections of

ED) ={f WUy), Uy & Y,, ae Al

It is the weakest topology on X that makes every single f,
continuous. We will prove this.

Proposition 10.1

Let X, Yy, ¥, and let X have the weak topology T as
described above. With this topology, every single f, is
continuous. And if X is equipped with another topol-
ogy (say 7') such that f, € C(T7’, Y,) then T < J".

Proof. Fix f,, and U, € Yy, then f;1(U,) € 7. So that f,
must be continuous. Moreover, if I’ is another topology on
X such that E(F) € T/, then it must contain {&, X}, along
with the unions of finite intersections of members of & (F).

|

A

Ex. 4.17 If X is a set, F is a collection of R-valued func-
tions on X, T(J) the weak topology on X by this fam-
ily of functions. Then T(¥) is Hausdorff if the family F
separates points: meaning for every x # y, there exists

FeF fO#FW.

Ex. 4.32 A topological space is Hausdorff iff every net in X
converges at most to one point.

Ex4.33 Let (x4)qea be anet in a topological space and let
Eq = {xp, B 2 a} denote the a-tail of the net, which
is cofinal. Then x is a cluster point of the net iff x €

ﬂaeA Ea-

Ex4.34 If X has the weak topology generated by F = {f :
X — Y} where Y is a topological space, then a net
(Xq)aea S X converges to x iff for every f € F, the

(f(xa»aeA - f(x)

10.1.1 Frechet Spaces
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Definition 10.2

TVS a vector space with a topology such that the ad-
dition and scalar multiplication maps a: X x X — X,
m:C x X — X are continuous.

cauchy net (x;);cs, is cauchy whenever the product-
directed net (x; — X;);, je1x1 converges to 0.

complete TVS every Cauchy net converges.

Frechet space a Cauchy-complete, Hausdorff topo-
logical vector space whose topology is defined by a
countable family of seminorms.

It suffices to pick Np > n, so that

1010% £ < Wl fi, e I I QL+ 1D .

It is also clear that 0% f € L*.

Proposition 10.5

Folland 8.2
Folland 8.3

10.3. Lp and Bounded Convergence

Proposition 10.3

Ex. 4.17 If X isa set, Fis a collection of R-valued func-
tions on X, T(J) the weak topology on X by this family
of functions. Then T(J) is Hausdorff if the family I
separates points: meaning for every x # y, there exists
feF, fx) £ f.

Ex. 4.32 A topological space is Hausdorff iff every net
in X converges at most to one point.

Ex 4.33 Let (xq)qca be a net in a topological space
and let Ey = {xg, B 2 a} denote the a-tail of the net,
which is cofinal. Then x is a cluster point of the net iff
X€NgeaEa-

Ex 4.34 If X has the weak topology generated by & =
{f : X — Y} where Y is a topological space, then a
net (xq)qea S X converges to x iff for every f € JF, the
(f(Xa))aea — f(X).

Ex. 5.44 If X is a first countable TVS, every Cauchy se-

Definition 10.6

10.4. Translations and Convolutions

Definition 10.7

If f,g measurable functions on R”, for all y € R",
(tyf)(x) = f(x—y). We also define the convolution be-
tween f, g as the function in x, whenever it converges
for a.e x:

(f*gﬂxﬁiénfu—YHdde

quence converges iff every Cauchy net converges.

10.2. Schwartz Space

Definition 10.4

Let ESR" and U €R". C*°(U) = {f : U — C, smooth},
and CP(E) ={f € C*(R",C), supp (f) < E}. By default:
C*® = C®(R"™), and C° = CL(R").

8 ={f € C%, lI*|l fin,a) < +o0},

where [|# ]| fin,q) = SUP yen (1 + 1DV [0% £ (2)].

Similar to how we view weak L? as the space of measurable
functions whose distribution function decays sufficiently
quickly against a polynomial, if f € § and « is any multi-
index

10% ()] < 1 fov,a (1 + )™

The polynomial factor A~V (x) = (1 + |x)~" is continuous
and hence bounded about the origin. If p is a usual ex-
ponent, so that the norms of LP are given by integration,
|x|""* & yge € LY(R™) for B = {x € R", |x| < p} for some
c>0:

0% FOIP < 1l £y o 1+ 1)~
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