Optimization

Anson Li

Contents

1 Barrier Method Solver 3
1.1 Test Cases o oo ot 3
1.2 Comparison with cvxpy 4

2 Preliminaries for Grid-Optimization 4
2.1 Optimization over m-cubes 5
2.2 Tetrominos Schemes 6
2.3 Computation of Rent 6

3 High-dimension Generalizations 9
3.1 Example e e e 9

4 ASCII Converter 10

5 Generalization to Regions that are Disks 11

6 Modification Ideas for Annuli instead of Disks 11

7 Noteworthy Things 13
7.1 Tensor Products using pandas.MultiIndex 13
7.2 Borders of Tetrominos o 0 e e e e e e 13
7.3 Classification of Tetrominos 14

Listings
1 barrier_method() in Part 1. e 3
2 Realizing Hyperplanes e 4
3 Minimizing fo over X 5
4 User defined schemes. Tilings A, B are given. Tiling C is user defined. 6
5 Results of optimization over all schemes. 8
6 Prompted user defined scheme L L. 8
7 Optimizing fy in higher dimensions using a tensored data structure. 9
8 easy tensor products e e e e 13
9 Classification = Huge Pain 14

Contents Optimization LIST OF FIGURES

List of Figures

1 5x4 Grid in cube coordinates. 5
Optimizing over every cube. Red dots are the minimizers. 6
3 Optimizing over tetrominos for Schemes A, B, and C. Use generate_plots() to see
this plot. o o o 7

Updated 2024-04-28 at 23:41 Page 2

Contents Optimization

Barrier Method Solver

The barrier method solver barrier_method.py closely follows outline that was shown, it imple-
ments gradient search with a logarithmic barrier. A snippet of the code is shown in listing 1.

Listing 1: barrier_method() in Part 1

198 """

199| A is a matrix whose number of rows < number of columns.

200 | Equality constrained to be on the affine set A_eq @ x = b_eq.

201 "

202| def barrier_method(f,x,t,mu,eps,alpha,beta,A,b,f_ineq,max_iterations=

MAX_ITERATIONS):

203 e

204 number of inequalities =m

205 have to start from a strictly feasible point.

206

207 Approximates the ideal barrier function by using a logarithmic barrier
function.

208 As t -> \infty, the perturbed objective function apporaches the ideal
objective function.

209 However, newton's method becomes increasingly difficult to solve for large
values of t.

210 Use a centering technique.

211 e

212 # construct barrier

213

214 # [ln(-f_ineq_1(x)), ... , 1n(-f_ineq_m(x))]

215 # so that if f_ineq_1 is positive (not feasible), then 1ln of a negative
number is -infinity

216 # 1n(0) gives us nan as well...

217

218 # this is a function of x

219 log_vector = compose_entrywise(lambda x: jnp.log(-x), f_ineq)

220 phi = lambda x: (-1)*jnp.sum(log_vector(x))

221

222 # deform the original objective function by log barrier and t

223 F = lambda t: lambda x: t*f(x) + phi(x)

224 Ft = F(%t)

225

226 xt = newtons_method(Ft,x,eps,A,b,alpha,beta,f_ineq) # 77 what is f_ineq
doing here

227

228 # compute m = number of contraints.

229 m = jnp.shape(f_ineq(x))[0] # to compute m, get length of f_ineq applied to
a point

230

231 # What if A = None? (unconstrained optimization)

232 counter = 0

233 while not barrier_stop_test(m,t,eps):

234 counter+=1

235 t*=mu

236 Ft = F(t) # new objective function

237 xt = newtons_method(Ft,xt,eps,A,b,alpha,beta,f_ineq) # 7?7 what is f_ineq

doing here

238

239 # print(f'Barrier ({counter}): ({xt}, {f(xt)})")

240

241 if counter>=max_iterations:

242 logger.warning (f'Barrier method failed to converge after

max_iterations = {max_iterations}.\nReturning x_last = xt.')
243 break
244 return xt

Test Cases

We have written a test generator to compare our performance against that of cvxpy. Let n,m,p
be the dimension of the domain, number of inequality and equality constraints. We will generate
objective functions of the form

fo=2"x, Px)pn+(q, X)gn+T,

with equality constraint Aeqx = beq, and inequality (affine) constraints: AineqX S Dineq- The matrix
P is positive definite and is generated using Cholesky’s method and lower triangularization because

Updated 2024-04-28 at 23:41 Page 3

Contents Optimization 1.2 Comparison with cvxpy

every positive operator admits a ’square-root’ decomposition.

To determine the starting point of the algorithm, we have to get creative, because the equality-
constraint set has measure zero in the inequality-constraint set. We used cvxpy’s solver to obtain
a feasible (and optimal) point x* to the problem, and we perturbed this point by some linear
combination of the spanning vectors of the kernel of Aeq. This perturbation however may make
us go out of the inequality-constrained region, and hence it is run on a while-loop until we get a
solution that also satisfies the inequality constraints.

Comparison with cvxpy

One can use the command compare_against_cvxpy(num_tests). The dimension of the domain
is programmed to be less than 6 due to limitations in computer resources. ,

1| user@s-Laptop ecse507-final % python3 -i barrier_method.py

2| >>> compare_against_cvxpy (10, False)

3| Generating 10 test cases.

4 cvxpy_result barrier_result percentage_error n_dom m_ineq p_eq
5|0 -5.881036 -5.880759 0.004711 4 1 1
6|1 -18.002843 -18.002817 0.000148 6 7 1
7|2 0.213485 0.21378164 0.139013 6 3 3
8|3 0.271904 0.27196267 0.021494 5 5 2
9| 4 -375.237190 -375.24002 0.000756 3 4 0
10| 5 -2.476908 -2.476316 0.023881 3 3 0
11| 6 -0.200263 -0.20022428 0.019242 3 5 0
12| 7 -0.851441 -0.8514215 0.002338 3 4 1
13| 8 10.516634 10.516672 0.000363 3 4 0
149 -118.436623 -118.43613 0.000419 5 2 0
15

16| On average = 0.0212364854231958847,

Preliminaries for Grid-Optimization

Line numbers are given for tetris.py. Tables are printed at the end of each section.

We introduce the n-dimensional setting. Let (N,) = (IV,...,Np) be a list of counting numbers
(meaning N; € N¥), we define our space X =[][0, N;] which is the union of N =I[N; cubes. If
me (Z)", the m-cube is the set €, =NJ{x € R", m; <x; <m; +1}. The set of all indices m where
¢,n € X will be denoted by Nx. Each m-cubes is equal to the intersection of 2n affine hyperplanes,

an element x € X iff
n14-ﬂRn

-m

idpn
—idpn

fineq(x) = ,S, 0, (1)

where Tge = (1,...,1) and < denotes an entrywise inequality. The first (resp. last) n rows in the
equation above represent the upper (resp. lower) bound for the coordinates of x, and this is easily
achieved using the tensor product, see Listing 2.

Listing 2: Realizing Hyperplanes

351 def cell_hyperplanes(m):

352 n = len(m)

353 id_Rn = np.eye(n)

354 A_ineq = np.kron(np.array([[1],[-1]]1), id_Rn) # first (resp. last)

n rows serve as the upper (resp. lower) bound for the
coordinate functions.

355 b_ineq = np.concatenate([m + np.ones_like(m), - m])
356 f_ineq = lambda x: A_ineq @ x - b_ineq
357 return f_ineq

Updated 2024-04-28 at 23:41 Page 4

Contents Optimization 2.1 Optimization over m-cubes

©.3) a3 @3 6.3) @.3)

©.2) w2 @2 6.2 @.2)

y axis

©.1) wy @1 G @1

©.0) o @.0 6.0 @0

Figure 1: 5x4 Grid in cube coordinates.

Let fo:R" — R be a smooth, convex objective function, and let X, m, Nx be define as above. Sup-
pose we are given a disjoint union X = UgpiteAr Where Ag = Ufnite €m, k and we wish to compute
the mazimin of the function Rigta({Ar}) =X infAy.

For the two-dimensional case:
folx,y) = (x=2)* +3(y -)* + 273, (2)

and X =10,5] x [0,4] is divided into 20 cubes shown in fig. 1

Optimization over m-cubes

It is clear that inf A} = min,, inf&,, ; at every k. For each of the cubes we can run our unconstrained
optimization algorithm, with fineq as in Equation (1). For fy as in eq. (2) we have ??. For each €,,,
the algorithm begins at the center point s and terminates at some point x* € €,,, the minimizing
value is the number f()(x*).1

Listing 3: Minimizing fy over X

1| >>> df

2 starting_point minimizer minimizing_value

3 00 [0.5, 0.5] [0.9999851, 0.9999829] 1.367917
4 1 [0.5, 1.5] [0.9999875, 1.1260438] 1.299729
5 2 [0.5, 2.5] [0.9999904, 2.000003] 4.018353
6 3 [0.5, 3.5] [0.9999882, 3.000002] 13.000958
7 10 [1.5, 0.5] [1.3125881, 0.99999094] 1.159964
8 1 [1.5, 1.5] [1.5103639, 1.244948] 0.909367
9 2 [1.5, 2.5] [1.891078, 2.0000033] 3.120726
10 3 [1.5, 3.5] [1.9921248, 3.0000012] 12.006709
11 20 [2.5, 0.5] [2.0000033, 0.99999774] 2.718318
12 1 [2.5, 1.5] [2.0000117, 1.4042233] 1.298631
13 2 [2.5, 2.5] [2.0000687, 2.0000036] 3.135374
14 3 [2.5, 3.5] [2.0010076, 3.0000017] 12.006772
15 30 [3.5, 0.5] [3.0000005, 0.99999964] 21.085575
16 1 [3.5, 1.5] [3.0000036, 1.8307542] 4.732004
17 2 [3.56, 2.5] [3.0000048, 2.0000062] 5.000038
18 3 [3.5, 3.5] [3.0000105, 3.000002] 13.049831
19 40 [4.5, 0.5] [4.0000005, 0.9999998] 152.413380
20 1 [4.5, 1.5] [4.0000014, 1.9999985] 14.389109
21 2 [4.5, 2.5] [4.0000024, 2.338457] 12.051242
22 3 [4.5, 3.5] [4.0000043, 3.000002] 16.367920

A plot of of the minimizers is shown in Figure 2.

IResults of Listing 3 can be seen in python by inspecting the variable df after running python3 -i tetris.py.

Updated 2024-04-28 at 23:41 Page 5

Contents Optimization 2.2 Tetrominos Schemes

ANV alValle

NS S
= P o= [

< 5N e

Figure 2: Optimizing over every cube. Red dots are the minimizers.

Tetrominos Schemes

A scheme is a disjoint union of X made of tetrominos. The method of converting an ASCII string
to a scheme is too complicated to be described in this section (however see later sections for more).
The user can define their own scheme to be used in the program by modifying the relevant lines
shown in listing 4.

Listing 4: User defined schemes. Tilings A, B are given. Tiling C is user defined.

308| Tiling_A_string "
309 aabb
310 daab
311 ddeb
312 d e

313| Tiling_A_colouri
314| Tiling_B_string
315 ab
316 a
317 e e
318 cedd """

319| Tiling_B_colouring = ['red', 'green', 'yellow', 'yellow', 'green']
320| # Custom Tilings
321| Tiling_C_string
322 b cd
323
324
325

6 6 "
= ['red', 'yellow', 'blue', 'green', 'green']
wn

aRaoT Il Boaoal
| =
12

oo o0 i
»
o T o

(SR
© 0o

bcd
bce
bce

Computation of Rent

For every tetromino T ={€,,} in a fixed scheme 8, it is obvious that we can compute its minimizer
and minimizing value. This is accomplished using the method compute_rent_for_scheme (), which
for a given scheme 8§ iterates over all such T and computes the rent of 8. Listing 5 contains the
results of this when applied to Schemes A, B, C. , which also returns the rent of the individual
schemes. We consider this computation to be ’elementary’, as we can read off the minimizers for
each tetromino for a given Scheme from fig. 2 or listing 5, and summing the minimizing values
to obtain the rent. We see that Scheme B produces a higher rent than Scheme A. A
comprehensive plot with all three schemes, and their minimizers is shown in fig. 3, one can generate
this using the command generate_plots().

2There is a prompt for user defined schemes using the method prompted_custom_scheme(). To use this, replace
the Scheme_C variable by the result of the prompt. See Listing 6 as well. Alternatively, the user can modify the
variable Scheme_C and rerun the program.

Updated 2024-04-28 at 23:41 Page 6

Contents Optimization 2.3 Computation of Rent

(eoe Figure 1 \
Scheme C [custom]
4 4
K S ©.3) @3 @3 6.3 @3
3 > < + > 3
B (0,2) ,2) (2,2) (,2)
>
%2 + %
S S
<
L3
+ Am=ar
1 + 1 oy i |
e (0,0 w0 .0 (3.0 (,0)
o 0
0 1 2 3 4 s 0 1 2 3 4 5
xaxis xaxis
Scheme A Scheme B
4 4
©.3) w3 @3 G.3) @3 ©.3) w3 @3 @.3) @3
3 3
AT =473
ol il
©.2) w2 2.2 3.2) ,2) ©.2) .2 @2 @.2) @2
S S
-\ [CBY) @1 [E3Y) 4,1 ©.1 @y @1 (E3Y) @1
. CrEE| - — . g
1 1 >~
©.0) w0 @0 3.0 ,0) ©.0) a0 @0 G.0) @0
o 0
o 1 2 3 4 5 0 1 2 3 a4 5
X axis X axis
A €>PQ= —

Figure 3: Optimizing over tetrominos for Schemes A, B, and C. Use generate_plots() to see this plot.

Updated 2024-04-28 at 23:41 Page 7

0N OO WN

Contents

Optimization

2.3 Computation of Rent

Listing 5: Results of optimization over all schemes.

>>> pprint.pprint(all_schemes)

[{'frame':
a [[o, 3]
b [[2, 3]
c [[4, 3]
da [lo, 2]
e [[2, 1]

'name':

'rent':
{'frame':
a [[o, 3]
b [[2, 3]
c [fo, 2]
d [[4, 2]
e [[1, 1]

'name':

'rent':
{'frame':
a [[o, 3]
b [[1, 3]
c [[2, 3]
da [I3, 3]
e [[3, 1]

'name':

'rent':

, [1, 31, [1, 21, [2,
, [3, 31, [3, 21, I3,
, [4, 21, [4, 1], [4,
, o, 11, [1, 11, [o,
, [1, 0], [2, o], [3,
'Scheme A',

21.97330317},

, [1, 381, [1, 2], [2,
, [3, 381, [4, 8], [3,
, [0, 11, o, 01, I[1,
, [4, 11, [3, 01, [4,
,» [2, 11, [3, 11, [2,
'Scheme B',

22.24133687},

, [o, 21, [o, 11, [o,
, [1, 21, [1, 11, [1,
, [2, 21, [2, 1], [2,
, [4, 31, [3, 21, [4,
, [4, 11, [3, 01, I[4,
'Scheme C [custom]',

13.239768671}]

2]]
11]
011
0]1]
0]1]

211
211
0]1]
011
0]1]

01]
0]1]
011
2]]
011

yel
b
gr
gr

gr
yel
yel

gr

tab:

tab

tab:
tab:
tab:

cells
red
low
lue
een
een

cells
red
een
low
low
een

cells
green
:green
green
olive
olive

® Q0o

o a0 o

colour char is_valid

True S
True L
True
True
True

2_R1

2_R1 [3.0000036,

I_R1
T_R2
T_R1 [1

colour char is_valid

®© Qo0 oE

type

minimizer starting_point

[1.891078, 2.0000033]

[4.0000024, 2.
[1.5103639, 1.

1.8307542]

338457]
244948]

.3125881, 0.99999094]

type

[1.5,

5,
[4.5,
5,
5,

o NN

minimizer starting_point

True S2_R1 [1.891078, 2.0000033]
True T_R3 [3.0000048, 2.0000062]
True L2_R3 [1.3125881, 0.99999094]
True L1_R3 [4.0000024, 2.338457]
True T_R3 [1.5103639, 1.244948]
colour char is_valid type
True I_R1 [0.9999875, 1.1260438]
True I_R1 [1.5103639, 1.244948]
True I_R1 [2.0000117, 1.4042233]
True SQUARE [3.0000048, 2.0000062]
True SQUARE [3.0000036, 1.8307542]

[1.5,

5,
[1.5,
5,
5,

RN O NN

3.
5.
ilo
12.
0.

minimizing_value

.120726
.732004
.051242
.909367
.159964,

minimizing_value
120726
000038
159964
051242
909367,

minimizer starting_point minimizing_value

5,
5,
.5,
5,

.5,

1
1
1
28
1

1.299729
0.909367
1.298631
5.000038
4.732004,

Listing 6: Prompted user defined scheme

3| all_schemes

1| Frame_C = prompted_custom_scheme ()
2| compute_rent_for_scheme (Frame_C)

Updated 2024-04-28 at 23:41

Page 8

Contents

Optimization

High-dimension Generalizations

The program tetris.py generalizes easily to arbitrary n-dimensional domains. We can take the

tensor product of 1-dimensional indexing sets to obtain some kind of lexicographical data structure.

Example

3

Postponing further discussion regarding the implementation, we offer an example in R® listing 7,

where

fo,y,2)=x-1)%+(y-2°2+(z-3%+3y on X=I0, 3]x[0, 3]0, 3].

Listing 7: Optimizing fy in higher dimensions using a tensored data structure.

1| user@s-Laptop ecse507-final % python3 -i tetris.py
2| Dataframe detected. Loading results from /Users/user/ecse507-final/
part2_optimal_points_tensored.csv.
3| Dataframe loaded.
4| >>> current_path =pathlib.Path('./').resolve()
5| >>> dpath_v3 = current_path/'a.csv'
6
7
8

>>> f0 = lambda x: (x[0]-1)**2 + (x[1]1-2)**2 + (x[2]-3)**2 + 3xx[1]

>>> GRID_N = [3,3,3]

>>> optimize_over_each_cell(dpath_v3,f0,GRID_N)
9| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
10| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
11| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
12| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
13| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
14| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
15| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
16| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
17| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
18| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
19| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
20| NewtonTest unsatisfied after 100 iterations. Are we at the boundary?

Finished optimizing over each cell,

saving to /Users/user/ecse507-final/a.csv

22 starting_point minimizer minimizing_value
23/0 00 [0.5, 0.5, 0.5] [0.996863, 0.5, 0.99999505] 7.7500296
24 1 [0.5, 0.5, 1.5] [0.99693114, 0.5, 1.9999902] 4.750029
25 2 [0.5, 0.5, 2.5] [0.9968636, 0.5, 2.9968636] 3.7500196
26 10 [0.5, 1.5, 0.5] [0.9969312, 1.0000174, 0.9999951] 8.000046
27 1 [0.5, 1.5, 1.5] [0.99686724, 1.0000198, 1.9999901] 5.0000496
28 2 [0.5, 1.5, 2.5] [0.99693114, 1.0000174, 2.996931] 4.0000362
29 2 0 [0.5, 2.5, 0.5] [0.99693155, 2.0000052, 0.9999952] 10.000044
30 1 [0.5, 2.5, 1.5] [0.9969312, 2.0000064, 1.9999902] 7.000048
31 2 [0.5, 2.5, 2.5] [0.99693155, 2.0000057, 2.9969316] 6.000036
32{1 00 [1.5, 0.5, 0.5] [1.003137, 0.5, 0.99999505] 7.7500296
33 1 [1.5, 0.5, 1.5] [1.0030689, 0.5, 1.9999902] 4.750029
34 2 [1.5, 0.5, 2.5] [1.0031364, 0.5, 2.9968636] 3.7500196
35 10 [1.5, 1.5, 0.5] [1.0030688, 1.0000174, 0.9999951] 8.000046
36 1= [4.5, 1.5, 1.51] [1.0031327, 1.0000198, 1.9999901] 5.0000496
37 2 [1.5, 1.5, 2.5] [1.0030689, 1.0000174, 2.996931] 4.0000362
38 20 [1.5, 2.5, 0.5] [1.0030684, 2.0000052, 0.9999952] 10.000044
39 1 [1.5, 2.5, 1.5] [1.0030688, 2.0000064, 1.9999902] 7.000048
40 2 [1.5, 2.5, 2.5] [1.0030684, 2.0000057, 2.9969316] 6.000036
4112 0 0 [2.5, 0.5, 0.5] [2.0000098, 0.5, 0.9999951] 8.750038
42 1 [2.5, 0.5, 1.5] [2.0000098, 0.5, 1.9999901] 5.750039
43 2 [2.5, 0.5, 2.5] [2.0000098, 0.5, 2.996931] 4.750029
44 10 [2.5, 1.5, 0.5] [2.000012, 1.0000234, 0.999994] 9.000071
45 1 [2.5, 1.5, 1.5] [2.0000098, 1.0000191, 1.9999905] 6.0000577
46 2 [2.5, 1.5, 2.5] [2.0000098, 1.0000198, 2.9968672] 5.000049
47 2 0 [2.5, 2.5, 0.5] [2.0000098, 2.0000064, 0.99999523] 11.000057
48 1 [2.5, 2.5, 1.5] [2.0000095, 2.0000062, 1.9999906] 8.000056
49 2 [2.5, 2.5, 2.5] [2.0000098, 2.0000064, 2.9969313] 7.000048
50| >>>

3The lexicographical ordering (or dictionary ordering) of basis vectors in ®11V R(J;) is the correspondence between

{1, ... ,H{V],-} and {@{Veu%é]i), lsa;<]J; 1=<is N} such that indices a; corresponding to a larger i value (closer to N)
take precedence during enumeration from 1 to H{V]l-. Ifa=(ay, ... ,an) € ®§\LIN+(]Z-),

N N N N
aZ(@ -D[[Ji+(@-D[][Ji++@n1-DIn+an=) (@;-1) [] J;
2 3 i=1 j=i+l

Updated 2024-04-28 at 23:41 Page 9

Contents Optimization

It is easy to generalize the algorithm for minimizing over each Ay (as in the notation of the beginning
of this document) to higher dimensions. In particular, we have included an example in the function
higher_dimensional_example().? Keep in mind that dataframes are cached to minimize loading
times. If the function fy or any other parameters are modified (other than the scheme), one should
delete the cached .csv file, found in the same folder as the program.

1| >>> result, df_new = higher_dimensional_example()

2| Dataframe detected. Loading results from /Users/user/ecse507-final/high_dim.csv.
3| Dataframe loaded.

4| {'frame': [{'cells': [(2, 0, 0), (2, 1, 1), (O, O, 1), (1, O, 21,
5 'minimizer': array([1.0031364, 0.5 , 2.9968636]),
6 'minimizing_value': 3.7500196},

7 {'cells': [(1, 2, 2),

8 (2, 2, 1),

9 2, 2, 0),

10 1, 2, 0),

11 2, 1, 0),

12 0, 1, 21,

13 'minimizer': array([0.99693114, 1.0000174 , 2.996931 1),
14 'minimizing_value': 4.0000362},

15 {'cells': [(0, 1, 0),

16 (0, 0, 0),

17 (1, o, 1),

18 (0, 0, 2),

19 0, 2, 1),

20 2, 1, 2),

21 2, 2, 271,

22 'minimizer': array([0.9968636, 0.5 , 2.9968636]1),
23 'minimizing_value': 3.7500196},

24 {'cells': [(2, 0, 2),

25 (0, 1, 1),

26 o, 2, 2),

27 o, 2, 0),

28 1, 1, 2),

29 1, 1, 1),

30 (1, 0, 0),

31 (2, 0, 1),

32 1, 2, 1),

33 (1, 1, 01,

34 'minimizer': array([1.0030689, 1.0000174, 2.996931 1),
35 'minimizing_value': 4.0000362}],

36 'name': 'High Dimensional Example',

37| 'rent': 15.5001116}

ASCII Converter

In this section, we discuss some of the methods of converting an ASCII input to a 2D partition.
First, we prompt the user for the number of rows and columns of the cell. The dimensions of
the grid has to satisfy rows x cols =0 mod 4. It is also easy to write a function that extracts the
positioning of the occurences of a specific character (i.e 'a’) in a string like

W N e
P
o oo o
o0 o0 o0
o 0 Qo
o 0 Qo

by scanning each row, and perhaps by trimming whitespaces and tabs if necessary.

Since each letter a, b, ¢, d, e must occur exactly 4 times, and the cells spanned by each corresponding
letter have to be connected, we must check if the user is even giving us a tetromino-union of X.
This is also easy to verify as the L' norm is designed precisely for this purpose, one would use
something like:

For every ce€ {cy,¢2,c3,¢4} =7, is there some ¢’ € T where |c— /|1 =17

4simp1y run python3 -i tetris.py then higher_dimensional_example().

Updated 2024-04-28 at 23:41 Page 10

Contents Optimization

If the answer to the above is positive, then T is a tetromino.”

Generalization to Regions that are Disks

Suppose we are given a finite collection of closed disks {D; = B(x/,rd)}?/I: | in the grid X = H;'l:l [0, Nj]
the necessary and sufficient conditions for admissibility of a configuration are

) = xk| > 7 + 1y Vi<jk<sM
min(x/l, Ix] - Nil| > V1=jsM, 1=i=n. (3)
x] e{l,...,Nj} Vi<j<M, 1l<i<n

Suppose the conditions in eq. (3) are met, and f; is smooth and convex on X. We can use the same

algorithm to maximize Ry, over the the union of the balls. Denote the minimizer, minimum pairs
of each ball by M, where

M= {(yjr fO(yj))’ yj :argminzeDj fO(Z)} (4)

It is clear that Rigia) = maXZj.Vilinﬂz_xusrj fo(z) =YX M. To compute (yj, fo(yj)), we can define each
closed disk D; using the (closed) sublevel set of the distance function

Dj=dist_}([0,ro]) where distc(y) =|x—yl

is continuous almost by definition of the standard topology on R”".

Modification Ideas for Annuli instead of Disks

In this final section of the report, we consider the case where X' = U?/il Aj, where Aj={zeR", s; <

|z—x/| < rj}. We assume that similar conditions to eq. (3) and the configuration that we are con-
cerned with is admissible.

Suppose we can minimize fy over every annuli, and obtain M as in eq. (4) but with A; instead of
Dj, then
Riotal (A =3 fo(y).
J

So that for the remainder of this section, we will only concern ourselves with optimizing fy over
any admissible annuli A= A;. We write A={zeR", s<|z—-xl <71}, B={zeR", |[z—xo| =1}, let
po = argmin, , fo(z) and p; = argmin, p fo(z). We can run our algorithm on the full-disk B, this
gives us an approximation of p;. If p; € A, then there is nothing to do, as pg = p1 (as measured
by fo or modulo fibers of fy). It is the case of p; ¢ A that is of interest to us. For this, we need a
geometric lemma.

5in practice, we also have to check that ¢; € X and are lattice points.

Updated 2024-04-28 at 23:41 Page 11

Contents Optimization

Lemma 1.1: Where is the minimizer?

Let fo be a non-constant, smooth, convex function on X, and A, B, po, p1
be as above. If p; ¢ A, then poe 0A\0B ={zeR", |z— x| = s}.

Proof. Suppose for contradiction that |pg— xo| = s+¢, the line segment start-
ing at pg in the direction of p; can be made so small that it lies entirely
within A. Let t >0 where p; = po+ t(p1— po) such that s<|p;—xp|l < s+e. By
the convexity of fy, we have our desired contradiction:

Jo(pe) = fo(po) + t(fo(p1) — fo(po)) < fo(po).

Let C={z€eR", |z— xg| = s} be the inner-boundary of A, I do not know of an easy way for us to find
po, so I will propose a few methods.

Vanishing Tangential Gradient
We can view C’ as a the boundary of a positively oriented (? I forgot the word) submanifold,
so that C' is equipped with a unit-tangential vector field (? word), we can produce a smooth
function g = (grad fy, Ter) Tre € C°(C',R) and solve for g =0. ® The benefits of this is that we
can use some intermediate value theorem argument when g changes sign.

Let me throw something random out there... By precomposing fy by a diffeomorphism (and
destroying all of its convex structure), we can assume that xo =0 and s=1. To find a
minimizing solution to fylc, we write fo(eiz”g) for all 6 € [0,1]. Suppose that fy changes sign
between [0, 0;], then Rolle’s Theorem will guarantee a critical point (along the submanifold).

Approximate C' using a sequence of convex submanifolds
We can probably, approximate the non-convex set by patching together convex bodies and
do a search that way. Not sure how effective this is.

Change the objective function
We can bend the objective function fy such that it discourages going inside E = {z € R", |z — xp| <
s} in the first place. Not sure how possible this is to accomplish without destroying the convex-
ity property. A simple appeal of adding some gy =2"1p(z)|z - xy|*> where p(z) is some smooth
mollifying function (that is possibly compactly supported) will not work because hy = fy + 8o
may fail to be convex (draw a picture and you will see that the line segment from pg to any
point ps € {z€R", |z— xo| = r} punctures the epigraph.

We can also try adding two quadratics in the form of (x — gg)? + (x — q1)?, where gy € 8B and
q1 € C', perhaps we can also write:
i2nf i2n9.

qo@) =re and q1(0) = se

Try plotting this on desmosin the one dimensional case, try g(x) = (x+ 1)+ (x — a)?, where
a€[-10, +10] and run the animation on desmos, seems promising!.

6sorry for notation

Updated 2024-04-28 at 23:41 Page 12

Contents

Optimization

Finally, we can try optimizing for gy = f0+2§:1 (sL)"(x—g;)?* where g; = sel%i and 6j=2mjL!

are equaly spaced points on the circle.

Noteworthy Things

We mention a few of the interesting things.

Tensor Products using pandas.MultiIndex

There is a built-in way of computing tensor products of indexing sets using

pandas.MultiIndex.from_product(q_MultiIndex),

where g_MultiIndex = list(map(range, [3,4,5])) is a list of intervals.

iterator shown in listing 8.

Listing 8: easy tensor products

1| >>> q_MultiIndex = list(map(range, [3,4,31))
2| >>> q_MultiIndex = pd.Multilndex.from_product(q_MultiIndex)
3| >>> gq_MultiIndex = list(q_MultilIndex)
4| >>> pprint.pprint(q_MultilIndex)
5| [(0, 0, 0),

6/ (0, 0, 1),

7 (0, 0, 2),

8 (0, 1, 0),

9 0, 1, 1),

10 0, 1, 2),

11| (0, 2, 0),

12| (0, 2, 1),

13| (0, 2, 2),

14| (0, 3, 0),

15 @, 8y Dy

16 0, 3, 2),

17 (1, o, 0),

18 (1, o, 1),

19 (1, o, 2),

20 (1, 1, 0),

21| (1, 1, 1),

22| (1, 1, 2),

23| (1, 2, 0),

24| (1, 2, 1),

25 (1, 2, 2),

26 (1, 3, 0),

27 (1, 3, 1),

28| (1, 3, 2),

29| (2, 0, 0),

30 (2, 0, 1),

31 (2, 0, 2),

32 @By Ly Wy

33 2, 1, 1),

34 @, Ly Do

35 2, 2, 0,

36 @, By Wy

37 @, By Do

38 (2, 3, 0),

39| (2, 3, 1),

40 (2, 3, 2)]

Borders of Tetrominos

This gives us the

For a cell in a tetromino c€ 7, an easy way to determine whether or not a border should be drawn
is to check whether or not the adjacent cell ¢’ = c+ ey where ey is a standard basis vector is occupied
by a cell is in your own tetromino 7.

If ¢’ ¢ T, then we can draw the 'border’ (a n—1 submanifold with corners) centered at the midpoint
m=(c+c)27!, which is just a L™ cube in R with radius 1.

Updated 2024-04-28 at 23:41

Page 13

Contents

Optimization

7.3 Classification of Tetrominos

Classification of Tetrominos

There is probably an easy way of classifying all of the tetrominos and their rotated versions, we
went with the rote and brute-force way of writing out all possible rotations and reflections. Shown

in Listing 9.

1| shapes = {

2| # Square Shape
3| 'SQUARE': """
4 a
5 a
6",

7| # L1 Shape

8| 'L1_R1': """
9 a
10 a
11 a
12 ",

13| 'L1_R2': """
14 a
15 b
| """,

17| 'L1_R3': """
18 b
19 b
20 a
21 "y,

22| 'L1_R4': """
23 a
24 a
25| ",

26| # L2 Shape

27| 'L2_R1': """
28 a
29 b
30 b
31| ",

32| 'L2_R2': """
33 b
34 a
35| """,

36| 'L2_R3': """
37 a
38 a
39 a
40| ",

41| 'L2_R4': """
42 a
43 a
44|

45| # T Shape

46| 'T_R1': """
47 b
48 a
49| ",

a
a

»

o o

o
o

50| 'T_R2': """

51 ab
52 aa
53 ab
54| ",

65| 'T_R3': """

56 aaa
57 b ab
Bg| """,

59| 'T_R4': """

60 b a
61 a a
62 b a
63| """,

64| # S1 Shape

65| 'S1_R1': """

66 b aa
67 aab
68| """,

69| 'S1_R2': """

70 ab
71 aa
72 b a
73| """,

74| # S2 Shape

75| 'S2_R1': """

76 aab
7 b aa
78| ",

79| 'S2_R2': """

80 b a
81 a a
82 ab
83| """,

84| # I Shape

85| 'I_R1': """

86 a

87 a

88 a

89 a

Q0| """,

91| 'I_R2': """

92 a aaa
93| """

94|}

Listing 9: Classification = Huge Pain

Updated 2024-04-28 at 23:41

Page 14

	1 Barrier Method Solver
	1.1 Test Cases
	1.2 Comparison with cvxpy

	2 Preliminaries for Grid-Optimization
	2.1 Optimization over m-cubes
	2.2 Tetrominos Schemes
	2.3 Computation of Rent

	3 High-dimension Generalizations
	3.1 Example

	4 ASCII Converter
	5 Generalization to Regions that are Disks
	6 Modification Ideas for Annuli instead of Disks
	7 Noteworthy Things
	7.1 Tensor Products using pandas.MultiIndex
	7.2 Borders of Tetrominos
	7.3 Classification of Tetrominos

