
Optimization

Anson Li

Contents

1 Barrier Method Solver 3
1.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Comparison with cvxpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries for Grid-Optimization 4
2.1 Optimization over m-cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Tetrominos Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Computation of Rent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 High-dimension Generalizations 9
3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 ASCII Converter 10

5 Generalization to Regions that are Disks 11

6 Modification Ideas for Annuli instead of Disks 11

7 Noteworthy Things 13
7.1 Tensor Products using pandas.MultiIndex . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Borders of Tetrominos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 Classification of Tetrominos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Listings
1 barrier_method() in Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Realizing Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Minimizing f0 over X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 User defined schemes. Tilings A, B are given. Tiling C is user defined. . . . . . . . . 6
5 Results of optimization over all schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Prompted user defined scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Optimizing f0 in higher dimensions using a tensored data structure. . . . . . . . . . . 9
8 easy tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9 Classification = Huge Pain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



Contents Optimization LIST OF FIGURES

List of Figures
1 5×4 Grid in cube coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Optimizing over every cube. Red dots are the minimizers. . . . . . . . . . . . . . . . . 6
3 Optimizing over tetrominos for Schemes A, B, and C. Use generate_plots() to see

this plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Updated 2024-04-28 at 23:41 Page 2



Contents Optimization

Barrier Method Solver
The barrier method solver barrier_method.py closely follows outline that was shown, it imple-
ments gradient search with a logarithmic barrier. A snippet of the code is shown in listing 1.

Listing 1: barrier_method() in Part 1
198 """
199 A is a matrix whose number of rows < number of columns.
200 Equality constrained to be on the affine set A_eq @ x = b_eq.
201 """
202 def barrier_method(f,x,t,mu,eps,alpha,beta,A,b,f_ineq,max_iterations=

MAX_ITERATIONS):
203 """
204 number of inequalities = m
205 have to start from a strictly feasible point.
206
207 Approximates the ideal barrier function by using a logarithmic barrier

function.
208 As t -> \infty, the perturbed objective function apporaches the ideal

objective function.
209 However, newton's method becomes increasingly difficult to solve for large

values of t.
210 Use a centering technique.
211 """
212 # construct barrier
213
214 # [ ln(-f_ineq_1(x)), ... , ln(-f_ineq_m(x)) ]
215 # so that if f_ineq_1 is positive (not feasible), then ln of a negative

number is -infinity
216 # ln(0) gives us nan as well...
217
218 # this is a function of x
219 log_vector = compose_entrywise(lambda x: jnp.log(-x), f_ineq)
220 phi = lambda x: (-1)*jnp.sum(log_vector(x))
221
222 # deform the original objective function by log barrier and t
223 F = lambda t: lambda x: t*f(x) + phi(x)
224 Ft = F(t)
225
226 xt = newtons_method(Ft,x,eps,A,b,alpha,beta,f_ineq) # ?? what is f_ineq

doing here
227
228 # compute m = number of contraints.
229 m = jnp.shape(f_ineq(x))[0] # to compute m, get length of f_ineq applied to

a point
230
231 # What if A = None? (unconstrained optimization)
232 counter = 0
233 while not barrier_stop_test(m,t,eps):
234 counter+=1
235 t*=mu
236 Ft = F(t) # new objective function
237 xt = newtons_method(Ft,xt,eps,A,b,alpha,beta,f_ineq) # ?? what is f_ineq

doing here
238
239 # print(f'Barrier({counter}): ({xt}, {f(xt)})')
240
241 if counter>=max_iterations:
242 logger.warning(f'Barrier method failed to converge after

max_iterations = {max_iterations}.\nReturning x_last = xt.')
243 break
244 return xt

Test Cases
We have written a test generator to compare our performance against that of cvxpy. Let n,m, p
be the dimension of the domain, number of inequality and equality constraints. We will generate
objective functions of the form

f0 = 2−1〈x, P x〉Rn +〈q, x〉Rn + r,

with equality constraint Aeqx = beq, and inequality (affine) constraints: Aineqx ≲ bineq. The matrix
P is positive definite and is generated using Cholesky’s method and lower triangularization because
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Contents Optimization 1.2 Comparison with cvxpy

every positive operator admits a ’square-root’ decomposition.

To determine the starting point of the algorithm, we have to get creative, because the equality-
constraint set has measure zero in the inequality-constraint set. We used cvxpy’s solver to obtain
a feasible (and optimal) point x∗ to the problem, and we perturbed this point by some linear
combination of the spanning vectors of the kernel of Aeq. This perturbation however may make
us go out of the inequality-constrained region, and hence it is run on a while-loop until we get a
solution that also satisfies the inequality constraints.

Comparison with cvxpy

One can use the command compare_against_cvxpy(num_tests). The dimension of the domain
is programmed to be less than 6 due to limitations in computer resources. ,

1 user@s-Laptop ecse507-final % python3 -i barrier_method.py
2 >>> compare_against_cvxpy(10, False)
3 Generating 10 test cases.
4 cvxpy_result barrier_result percentage_error n_dom m_ineq p_eq
5 0 -5.881036 -5.880759 0.004711 4 1 1
6 1 -18.002843 -18.002817 0.000148 6 7 1
7 2 0.213485 0.21378164 0.139013 6 3 3
8 3 0.271904 0.27196267 0.021494 5 5 2
9 4 -375.237190 -375.24002 0.000756 3 4 0
10 5 -2.476908 -2.476316 0.023881 3 3 0
11 6 -0.200263 -0.20022428 0.019242 3 5 0
12 7 -0.851441 -0.8514215 0.002338 3 4 1
13 8 10.516634 10.516672 0.000363 3 4 0
14 9 -118.436623 -118.43613 0.000419 5 2 0
15
16 On average = 0.021236485423195884%

Preliminaries for Grid-Optimization
Line numbers are given for tetris.py. Tables are printed at the end of each section.

We introduce the n-dimensional setting. Let (Nn) = (N1, . . . , Nn) be a list of counting numbers
(meaning Ni ∈ N+), we define our space X = ∏

[0, Ni ] which is the union of N = ∏
Ni cubes. If

m ∈ (Z)n , the m-cube is the set Cm = ∩n
1 {x ∈ Rn , mi ≤ xi ≤ mi +1}. The set of all indices m where

Cm ⊆ X will be denoted by NX . Each m-cubes is equal to the intersection of 2n affine hyperplanes,
an element x ∈ X iff

fineq(x) =
[

idRn

− idRn

]
x −

[
m + 1Rn

−m

]
≲ 0, (1)

where 1Rn = (1, . . . ,1) and ≲ denotes an entrywise inequality. The first (resp. last) n rows in the
equation above represent the upper (resp. lower) bound for the coordinates of x, and this is easily
achieved using the tensor product, see Listing 2.

Listing 2: Realizing Hyperplanes
351 def cell_hyperplanes(m):
352 n = len(m)
353 id_Rn = np.eye(n)
354 A_ineq = np.kron( np.array([[1],[-1]]), id_Rn ) # first (resp. last)

n rows serve as the upper (resp. lower) bound for the
coordinate functions.

355 b_ineq = np.concatenate([m + np.ones_like(m), - m])
356 f_ineq = lambda x: A_ineq @ x - b_ineq
357 return f_ineq
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Figure 1: 5×4 Grid in cube coordinates.

Let f0 : Rn →R be a smooth, convex objective function, and let X , m, NX be define as above. Sup-
pose we are given a disjoint union X = ∪

finiteAk where Ak = ∪
finiteCm,k and we wish to compute

the maximin of the function Rtotal({Ak }) =∑
k infAk .

For the two-dimensional case:

f0(x, y) = (x −2)2 +3(y −1)2 +e2x−3y , (2)

and X = [0,5]× [0,4] is divided into 20 cubes shown in fig. 1

Optimization over m-cubes
It is clear that infAk = minm infCm,k at every k. For each of the cubes we can run our unconstrained
optimization algorithm, with fineq as in Equation (1). For f0 as in eq. (2) we have ??. For each Cm ,
the algorithm begins at the center point s and terminates at some point x∗ ∈ Cm , the minimizing
value is the number f0(x∗).1

Listing 3: Minimizing f0 over X
1 >>> df
2 starting_point minimizer minimizing_value
3 0 0 [0.5, 0.5] [0.9999851, 0.9999829] 1.367917
4 1 [0.5, 1.5] [0.9999875, 1.1260438] 1.299729
5 2 [0.5, 2.5] [0.9999904, 2.000003] 4.018353
6 3 [0.5, 3.5] [0.9999882, 3.000002] 13.000958
7 1 0 [1.5, 0.5] [1.3125881, 0.99999094] 1.159964
8 1 [1.5, 1.5] [1.5103639, 1.244948] 0.909367
9 2 [1.5, 2.5] [1.891078, 2.0000033] 3.120726
10 3 [1.5, 3.5] [1.9921248, 3.0000012] 12.006709
11 2 0 [2.5, 0.5] [2.0000033, 0.99999774] 2.718318
12 1 [2.5, 1.5] [2.0000117, 1.4042233] 1.298631
13 2 [2.5, 2.5] [2.0000687, 2.0000036] 3.135374
14 3 [2.5, 3.5] [2.0010076, 3.0000017] 12.006772
15 3 0 [3.5, 0.5] [3.0000005, 0.99999964] 21.085575
16 1 [3.5, 1.5] [3.0000036, 1.8307542] 4.732004
17 2 [3.5, 2.5] [3.0000048, 2.0000062] 5.000038
18 3 [3.5, 3.5] [3.0000105, 3.000002] 13.049831
19 4 0 [4.5, 0.5] [4.0000005, 0.9999998] 152.413380
20 1 [4.5, 1.5] [4.0000014, 1.9999985] 14.389109
21 2 [4.5, 2.5] [4.0000024, 2.338457] 12.051242
22 3 [4.5, 3.5] [4.0000043, 3.000002] 16.367920

A plot of of the minimizers is shown in Figure 2.
1Results of Listing 3 can be seen in python by inspecting the variable df after running python3 -i tetris.py.
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Contents Optimization 2.2 Tetrominos Schemes

Figure 2: Optimizing over every cube. Red dots are the minimizers.

Tetrominos Schemes
A scheme is a disjoint union of X made of tetrominos. The method of converting an ASCII string
to a scheme is too complicated to be described in this section (however see later sections for more).
The user can define their own scheme to be used in the program by modifying the relevant lines
shown in listing 4.2

Listing 4: User defined schemes. Tilings A, B are given. Tiling C is user defined.
308 Tiling_A_string = """
309 a a b b c
310 d a a b c
311 d d e b c
312 d e e e c"""
313 Tiling_A_colouring = ['red', 'yellow', 'blue', 'green', 'green']
314 Tiling_B_string = """
315 a a b b b
316 c a a b d
317 c e e e d
318 c c e d d """
319 Tiling_B_colouring = ['red', 'green', 'yellow', 'yellow', 'green']
320 # Custom Tilings
321 Tiling_C_string = """
322 a b c d d
323 a b c d d
324 a b c e e
325 a b c e e """

Computation of Rent
For every tetromino T = {Cm} in a fixed scheme S, it is obvious that we can compute its minimizer
and minimizing value. This is accomplished using the method compute_rent_for_scheme(), which
for a given scheme S iterates over all such T and computes the rent of S. Listing 5 contains the
results of this when applied to Schemes A, B, C. , which also returns the rent of the individual
schemes. We consider this computation to be ’elementary’, as we can read off the minimizers for
each tetromino for a given Scheme from fig. 2 or listing 5, and summing the minimizing values
to obtain the rent. We see that Scheme B produces a higher rent than Scheme A. A
comprehensive plot with all three schemes, and their minimizers is shown in fig. 3, one can generate
this using the command generate_plots().

2There is a prompt for user defined schemes using the method prompted_custom_scheme(). To use this, replace
the Scheme_C variable by the result of the prompt. See Listing 6 as well. Alternatively, the user can modify the
variable Scheme_C and rerun the program.
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Contents Optimization 2.3 Computation of Rent

Figure 3: Optimizing over tetrominos for Schemes A, B, and C. Use generate_plots() to see this plot.
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Contents Optimization 2.3 Computation of Rent

Listing 5: Results of optimization over all schemes.
1 >>> pprint.pprint(all_schemes)
2 [{'frame': cells colour char is_valid type minimizer starting_point minimizing_value
3 a [[0, 3], [1, 3], [1, 2], [2, 2]] red a True S2_R1 [1.891078, 2.0000033] [1.5, 2.5] 3.120726
4 b [[2, 3], [3, 3], [3, 2], [3, 1]] yellow b True L2_R1 [3.0000036, 1.8307542] [3.5, 1.5] 4.732004
5 c [[4, 3], [4, 2], [4, 1], [4, 0]] blue c True I_R1 [4.0000024, 2.338457] [4.5, 2.5] 12.051242
6 d [[0, 2], [0, 1], [1, 1], [0, 0]] green d True T_R2 [1.5103639, 1.244948] [1.5, 1.5] 0.909367
7 e [[2, 1], [1, 0], [2, 0], [3, 0]] green e True T_R1 [1.3125881, 0.99999094] [1.5, 0.5] 1.159964,
8 'name': 'Scheme A',
9 'rent': 21.97330317},
10 {'frame': cells colour char is_valid type minimizer starting_point minimizing_value
11 a [[0, 3], [1, 3], [1, 2], [2, 2]] red a True S2_R1 [1.891078, 2.0000033] [1.5, 2.5] 3.120726
12 b [[2, 3], [3, 3], [4, 3], [3, 2]] green b True T_R3 [3.0000048, 2.0000062] [3.5, 2.5] 5.000038
13 c [[0, 2], [0, 1], [0, 0], [1, 0]] yellow c True L2_R3 [1.3125881, 0.99999094] [1.5, 0.5] 1.159964
14 d [[4, 2], [4, 1], [3, 0], [4, 0]] yellow d True L1_R3 [4.0000024, 2.338457] [4.5, 2.5] 12.051242
15 e [[1, 1], [2, 1], [3, 1], [2, 0]] green e True T_R3 [1.5103639, 1.244948] [1.5, 1.5] 0.909367,
16 'name': 'Scheme B',
17 'rent': 22.24133687},
18 {'frame': cells colour char is_valid type minimizer starting_point minimizing_value
19 a [[0, 3], [0, 2], [0, 1], [0, 0]] tab:green a True I_R1 [0.9999875, 1.1260438] [0.5, 1.5] 1.299729
20 b [[1, 3], [1, 2], [1, 1], [1, 0]] tab:green b True I_R1 [1.5103639, 1.244948] [1.5, 1.5] 0.909367
21 c [[2, 3], [2, 2], [2, 1], [2, 0]] tab:green c True I_R1 [2.0000117, 1.4042233] [2.5, 1.5] 1.298631
22 d [[3, 3], [4, 3], [3, 2], [4, 2]] tab:olive d True SQUARE [3.0000048, 2.0000062] [3.5, 2.5] 5.000038
23 e [[3, 1], [4, 1], [3, 0], [4, 0]] tab:olive e True SQUARE [3.0000036, 1.8307542] [3.5, 1.5] 4.732004,
24 'name': 'Scheme C [custom]',
25 'rent': 13.23976867}]

Listing 6: Prompted user defined scheme
1 Frame_C = prompted_custom_scheme()
2 compute_rent_for_scheme(Frame_C)
3 all_schemes
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High-dimension Generalizations
The program tetris.py generalizes easily to arbitrary n-dimensional domains. We can take the
tensor product of 1-dimensional indexing sets to obtain some kind of lexicographical data structure.3

Example
Postponing further discussion regarding the implementation, we offer an example in R3 listing 7,
where

f0(x, y, z) = (x −1)2 + (y −2)2 + (z −3)2 +3y on X = [0, 3]× [0, 3]× [0, 3].

Listing 7: Optimizing f0 in higher dimensions using a tensored data structure.
1 user@s-Laptop ecse507-final % python3 -i tetris.py
2 Dataframe detected. Loading results from /Users/user/ecse507-final/

part2_optimal_points_tensored.csv.
3 Dataframe loaded.
4 >>> current_path =pathlib.Path('./').resolve()
5 >>> dpath_v3 = current_path/'a.csv'
6 >>> f0 = lambda x: (x[0]-1)**2 + (x[1]-2)**2 + (x[2]-3)**2 + 3*x[1]
7 >>> GRID_N = [3,3,3]
8 >>> optimize_over_each_cell(dpath_v3,f0,GRID_N)
9 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
10 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
11 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
12 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
13 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
14 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
15 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
16 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
17 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
18 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
19 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
20 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
21 Finished optimizing over each cell, saving to /Users/user/ecse507-final/a.csv
22 starting_point minimizer minimizing_value
23 0 0 0 [0.5, 0.5, 0.5] [0.996863, 0.5, 0.99999505] 7.7500296
24 1 [0.5, 0.5, 1.5] [0.99693114, 0.5, 1.9999902] 4.750029
25 2 [0.5, 0.5, 2.5] [0.9968636, 0.5, 2.9968636] 3.7500196
26 1 0 [0.5, 1.5, 0.5] [0.9969312, 1.0000174, 0.9999951] 8.000046
27 1 [0.5, 1.5, 1.5] [0.99686724, 1.0000198, 1.9999901] 5.0000496
28 2 [0.5, 1.5, 2.5] [0.99693114, 1.0000174, 2.996931] 4.0000362
29 2 0 [0.5, 2.5, 0.5] [0.99693155, 2.0000052, 0.9999952] 10.000044
30 1 [0.5, 2.5, 1.5] [0.9969312, 2.0000064, 1.9999902] 7.000048
31 2 [0.5, 2.5, 2.5] [0.99693155, 2.0000057, 2.9969316] 6.000036
32 1 0 0 [1.5, 0.5, 0.5] [1.003137, 0.5, 0.99999505] 7.7500296
33 1 [1.5, 0.5, 1.5] [1.0030689, 0.5, 1.9999902] 4.750029
34 2 [1.5, 0.5, 2.5] [1.0031364, 0.5, 2.9968636] 3.7500196
35 1 0 [1.5, 1.5, 0.5] [1.0030688, 1.0000174, 0.9999951] 8.000046
36 1 [1.5, 1.5, 1.5] [1.0031327, 1.0000198, 1.9999901] 5.0000496
37 2 [1.5, 1.5, 2.5] [1.0030689, 1.0000174, 2.996931] 4.0000362
38 2 0 [1.5, 2.5, 0.5] [1.0030684, 2.0000052, 0.9999952] 10.000044
39 1 [1.5, 2.5, 1.5] [1.0030688, 2.0000064, 1.9999902] 7.000048
40 2 [1.5, 2.5, 2.5] [1.0030684, 2.0000057, 2.9969316] 6.000036
41 2 0 0 [2.5, 0.5, 0.5] [2.0000098, 0.5, 0.9999951] 8.750038
42 1 [2.5, 0.5, 1.5] [2.0000098, 0.5, 1.9999901] 5.750039
43 2 [2.5, 0.5, 2.5] [2.0000098, 0.5, 2.996931] 4.750029
44 1 0 [2.5, 1.5, 0.5] [2.000012, 1.0000234, 0.999994] 9.000071
45 1 [2.5, 1.5, 1.5] [2.0000098, 1.0000191, 1.9999905] 6.0000577
46 2 [2.5, 1.5, 2.5] [2.0000098, 1.0000198, 2.9968672] 5.000049
47 2 0 [2.5, 2.5, 0.5] [2.0000098, 2.0000064, 0.99999523] 11.000057
48 1 [2.5, 2.5, 1.5] [2.0000095, 2.0000062, 1.9999906] 8.000056
49 2 [2.5, 2.5, 2.5] [2.0000098, 2.0000064, 2.9969313] 7.000048
50 >>>

3The lexicographical ordering (or dictionary ordering) of basis vectors in ⊗N
1 R(Ji ) is the correspondence between

{1, . . . ,
∏N

1 Ji } and
{
⊗N

1 eαi
R(Ji ), 1 ≤αi ≤ Ji , 1 ≤ i ≤ N

}
such that indices αi corresponding to a larger i value (closer to N)

take precedence during enumeration from 1 to ∏N
1 Ji . If α= (α1, . . . ,αN ) ∈⊗N

i=1N
+(Ji ),

α∼= (α1 −1)
N∏
2

Ji + (α2 −1)
N∏
3

Ji +·· ·+ (αN−1 −1)JN +αN =
N∑

i=1
(αi −1)

N∏
j=i+1

J j
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It is easy to generalize the algorithm for minimizing over each Ak (as in the notation of the beginning
of this document) to higher dimensions. In particular, we have included an example in the function
higher_dimensional_example().4 Keep in mind that dataframes are cached to minimize loading
times. If the function f0 or any other parameters are modified (other than the scheme), one should
delete the cached .csv file, found in the same folder as the program.

1 >>> result, df_new = higher_dimensional_example()
2 Dataframe detected. Loading results from /Users/user/ecse507-final/high_dim.csv.
3 Dataframe loaded.
4 {'frame': [{'cells': [(2, 0, 0), (2, 1, 1), (0, 0, 1), (1, 0, 2)],
5 'minimizer': array([1.0031364, 0.5 , 2.9968636]),
6 'minimizing_value': 3.7500196},
7 {'cells': [(1, 2, 2),
8 (2, 2, 1),
9 (2, 2, 0),
10 (1, 2, 0),
11 (2, 1, 0),
12 (0, 1, 2)],
13 'minimizer': array([0.99693114, 1.0000174 , 2.996931 ]),
14 'minimizing_value': 4.0000362},
15 {'cells': [(0, 1, 0),
16 (0, 0, 0),
17 (1, 0, 1),
18 (0, 0, 2),
19 (0, 2, 1),
20 (2, 1, 2),
21 (2, 2, 2)],
22 'minimizer': array([0.9968636, 0.5 , 2.9968636]),
23 'minimizing_value': 3.7500196},
24 {'cells': [(2, 0, 2),
25 (0, 1, 1),
26 (0, 2, 2),
27 (0, 2, 0),
28 (1, 1, 2),
29 (1, 1, 1),
30 (1, 0, 0),
31 (2, 0, 1),
32 (1, 2, 1),
33 (1, 1, 0)],
34 'minimizer': array([1.0030689, 1.0000174, 2.996931 ]),
35 'minimizing_value': 4.0000362}],
36 'name': 'High Dimensional Example',
37 'rent': 15.5001116}

ASCII Converter
In this section, we discuss some of the methods of converting an ASCII input to a 2D partition.
First, we prompt the user for the number of rows and columns of the cell. The dimensions of
the grid has to satisfy rows× cols ≡ 0 mod 4. It is also easy to write a function that extracts the
positioning of the occurences of a specific character (i.e ’a’) in a string like

1 a b c d d
2 a b c d d
3 a b c e e
4 a b c e e

by scanning each row, and perhaps by trimming whitespaces and tabs if necessary.

Since each letter a, b, c, d, e must occur exactly 4 times, and the cells spanned by each corresponding
letter have to be connected, we must check if the user is even giving us a tetromino-union of X .
This is also easy to verify as the L1 norm is designed precisely for this purpose, one would use
something like:

For every c ∈ {c1,c2,c3,c4} =T, is there some c ′ ∈T where |c − c ′|L1 = 1?
4simply run python3 -i tetris.py then higher_dimensional_example().
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If the answer to the above is positive, then T is a tetromino.5

Generalization to Regions that are Disks

Suppose we are given a finite collection of closed disks {D j = B(x j ,r j )}M
j=1 in the grid X =∏n

j=1[0, N j ]
the necessary and sufficient conditions for admissibility of a configuration are

|x j −xk | > r j + rk ∀1 ≤ j ,k ≤ M

min
(
|x j

i |, |x j
i −Ni |

)
> r j ∀1 ≤ j ≤ M , 1 ≤ i ≤ n

x j
i ∈ {1, . . . , Ni } ∀1 ≤ j ≤ M , 1 ≤ i ≤ n

. (3)

Suppose the conditions in eq. (3) are met, and f0 is smooth and convex on X . We can use the same
algorithm to maximize Rtotal over the the union of the balls. Denote the minimizer, minimum pairs
of each ball by M, where

M=
{(

y j , f0(y j )
)
, y j = argminz∈D j

f0(z)
}

. (4)

It is clear that Rtotal = max
∑M

j=1 inf|z−x j |≤r j f0(z) =∑
M. To compute (y j , f0(y j )), we can define each

closed disk D j using the (closed) sublevel set of the distance function

D j = dist−1
x j ([0,r0]) where distx (y) = |x − y |

is continuous almost by definition of the standard topology on Rn .

Modification Ideas for Annuli instead of Disks

In this final section of the report, we consider the case where X ′ =∪M
j=1 A j , where A j = {z ∈Rn , s j ≤

|z −x j | ≤ r j }. We assume that similar conditions to eq. (3) and the configuration that we are con-
cerned with is admissible.

Suppose we can minimize f0 over every annuli, and obtain M as in eq. (4) but with A j instead of
D j , then

Rtotal({A j }) =∑
j

f0(y j ).

So that for the remainder of this section, we will only concern ourselves with optimizing f0 over
any admissible annuli A = A j . We write A = {z ∈ Rn , s ≤ |z −x0| ≤ r }, B = {z ∈ Rn , |z −x0| ≤ r }, let
p0 = argminz∈A f0(z) and p1 = argminz∈B f0(z). We can run our algorithm on the full-disk B , this
gives us an approximation of p1. If p1 ∈ A, then there is nothing to do, as p0 = p1 (as measured
by f0 or modulo fibers of f0). It is the case of p1 ∉ A that is of interest to us. For this, we need a
geometric lemma.

5in practice, we also have to check that ci ∈ X and are lattice points.
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Lemma 1.1: Where is the minimizer?

Let f0 be a non-constant, smooth, convex function on X , and A, B , p0, p1

be as above. If p1 ∉ A, then p0 ∈ ∂A \∂B = {z ∈Rn , |z −x0| = s}.

Proof. Suppose for contradiction that |p0 −x0| = s+ε, the line segment start-
ing at p0 in the direction of p1 can be made so small that it lies entirely
within A. Let t > 0 where pt = p0+ t (p1−p0) such that s ≤ |pt −x0| ≤ s+ε. By
the convexity of f0, we have our desired contradiction:

f0(pt ) ≤ f0(p0)+ t ( f0(p1)− f0(p0)) < f0(p0).

■
Let C = {z ∈Rn , |z −x0| = s} be the inner-boundary of A, I do not know of an easy way for us to find
p0, so I will propose a few methods.
Vanishing Tangential Gradient

We can view C ′ as a the boundary of a positively oriented (? I forgot the word) submanifold,
so that C ′ is equipped with a unit-tangential vector field (? word), we can produce a smooth
function g = 〈grad f0,TC ′〉TRn ∈C∞(C ′,R) and solve for g = 0. 6 The benefits of this is that we
can use some intermediate value theorem argument when g changes sign.

Let me throw something random out there... By precomposing f0 by a diffeomorphism (and
destroying all of its convex structure), we can assume that x0 = 0 and s = 1. To find a
minimizing solution to f0|C , we write f0(e i 2πθ) for all θ ∈ [0,1]. Suppose that f0 changes sign
between [θ0, θ1], then Rolle’s Theorem will guarantee a critical point (along the submanifold).

Approximate C ′ using a sequence of convex submanifolds
We can probably, approximate the non-convex set by patching together convex bodies and
do a search that way. Not sure how effective this is.

Change the objective function
We can bend the objective function f0 such that it discourages going inside E = {z ∈Rn , |z −x0| ≤
s} in the first place. Not sure how possible this is to accomplish without destroying the convex-
ity property. A simple appeal of adding some g0 = 2−1ρ(z)|z −x0|2 where ρ(z) is some smooth
mollifying function (that is possibly compactly supported) will not work because h0 = f0 + g0

may fail to be convex ( draw a picture and you will see that the line segment from p0 to any
point p2 ∈ {z ∈Rn , |z −x0| = r } punctures the epigraph.

We can also try adding two quadratics in the form of (x −q0)2 + (x −q1)2, where q0 ∈ ∂B and
q1 ∈C ′, perhaps we can also write:

q0(θ) = r e i 2πθ and q1(θ) = se i 2πθ.

Try plotting this on desmosin the one dimensional case, try g (x) = (x +1)2 + (x − a)2, where
a ∈ [−10, +10] and run the animation on desmos, seems promising!.

6sorry for notation
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Finally, we can try optimizing for g0 = f0+∑L
j=1(sL)−1(x−q j )2 where q j = se iθ j and θ j = 2π j L−1

are equaly spaced points on the circle.

Noteworthy Things
We mention a few of the interesting things.

Tensor Products using pandas.MultiIndex

There is a built-in way of computing tensor products of indexing sets using

pandas.MultiIndex.from_product(q_MultiIndex),

where q_MultiIndex = list(map( range, [3,4,5] ) ) is a list of intervals. This gives us the
iterator shown in listing 8.

Listing 8: easy tensor products
1 >>> q_MultiIndex = list(map(range, [3,4,3]))
2 >>> q_MultiIndex = pd.MultiIndex.from_product(q_MultiIndex)
3 >>> q_MultiIndex = list(q_MultiIndex)
4 >>> pprint.pprint(q_MultiIndex)
5 [(0, 0, 0),
6 (0, 0, 1),
7 (0, 0, 2),
8 (0, 1, 0),
9 (0, 1, 1),
10 (0, 1, 2),
11 (0, 2, 0),
12 (0, 2, 1),
13 (0, 2, 2),
14 (0, 3, 0),
15 (0, 3, 1),
16 (0, 3, 2),
17 (1, 0, 0),
18 (1, 0, 1),
19 (1, 0, 2),
20 (1, 1, 0),
21 (1, 1, 1),
22 (1, 1, 2),
23 (1, 2, 0),
24 (1, 2, 1),
25 (1, 2, 2),
26 (1, 3, 0),
27 (1, 3, 1),
28 (1, 3, 2),
29 (2, 0, 0),
30 (2, 0, 1),
31 (2, 0, 2),
32 (2, 1, 0),
33 (2, 1, 1),
34 (2, 1, 2),
35 (2, 2, 0),
36 (2, 2, 1),
37 (2, 2, 2),
38 (2, 3, 0),
39 (2, 3, 1),
40 (2, 3, 2)]

Borders of Tetrominos
For a cell in a tetromino c ∈T, an easy way to determine whether or not a border should be drawn
is to check whether or not the adjacent cell c ′ = c+ek where ek is a standard basis vector is occupied
by a cell is in your own tetromino T.

If c ′ ∉T, then we can draw the ’border’ (a n−1 submanifold with corners) centered at the midpoint
m = (c + c ′)2−1, which is just a L∞ cube in Rn−1 with radius 1.
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Classification of Tetrominos
There is probably an easy way of classifying all of the tetrominos and their rotated versions, we
went with the rote and brute-force way of writing out all possible rotations and reflections. Shown
in Listing 9.

1 shapes = {
2 # Square Shape
3 'SQUARE': """
4 a a
5 a a
6 """,
7 # L1 Shape
8 'L1_R1': """
9 a a
10 a b
11 a b
12 """,
13 'L1_R2': """
14 a a a
15 b b a
16 """,
17 'L1_R3': """
18 b a
19 b a
20 a a
21 """,
22 'L1_R4': """
23 a b b
24 a a a
25 """,
26 # L2 Shape
27 'L2_R1': """
28 a a
29 b a
30 b a
31 """,
32 'L2_R2': """
33 b b a
34 a a a
35 """,
36 'L2_R3': """
37 a b
38 a b
39 a a
40 """,
41 'L2_R4': """
42 a a a
43 a b b
44 """,
45 # T Shape
46 'T_R1': """
47 b a b
48 a a a
49 """,

50 'T_R2': """
51 a b
52 a a
53 a b
54 """,
55 'T_R3': """
56 a a a
57 b a b
58 """,
59 'T_R4': """
60 b a
61 a a
62 b a
63 """,
64 # S1 Shape
65 'S1_R1': """
66 b a a
67 a a b
68 """,
69 'S1_R2': """
70 a b
71 a a
72 b a
73 """,
74 # S2 Shape
75 'S2_R1': """
76 a a b
77 b a a
78 """,
79 'S2_R2': """
80 b a
81 a a
82 a b
83 """,
84 # I Shape
85 'I_R1': """
86 a
87 a
88 a
89 a
90 """,
91 'I_R2': """
92 a a a a
93 """
94 }

Listing 9: Classification = Huge Pain
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