

Optimization

Anson Li

Contents

1	Barrier Method Solver	3
1.1	Test Cases	3
1.2	Comparison with <code>cvxpy</code>	4
2	Preliminaries for Grid-Optimization	4
2.1	Optimization over m -cubes	5
2.2	Tetrominos Schemes	6
2.3	Computation of Rent	6
3	High-dimension Generalizations	9
3.1	Example	9
4	ASCII Converter	10
5	Generalization to Regions that are Disks	11
6	Modification Ideas for Annuli instead of Disks	11
7	Noteworthy Things	13
7.1	Tensor Products using <code>pandas.MultiIndex</code>	13
7.2	Borders of Tetrominos	13
7.3	Classification of Tetrominos	14

Listings

1	<code>barrier_method()</code> in Part 1	3
2	Realizing Hyperplanes	4
3	Minimizing f_0 over X	5
4	User defined schemes. Tilings A, B are given. Tiling C is user defined.	6
5	Results of optimization over all schemes.	8
6	Prompted user defined scheme	8
7	Optimizing f_0 in higher dimensions using a tensored data structure.	9
8	easy tensor products	13
9	Classification = Huge Pain	14

List of Figures

1	5 × 4 Grid in cube coordinates.	5
2	Optimizing over every cube. Red dots are the minimizers.	6
3	Optimizing over tetrominos for Schemes A, B, and C. Use <code>generate_plots()</code> to see this plot.	7

Barrier Method Solver

The barrier method solver `barrier_method.py` closely follows outline that was shown, it implements gradient search with a logarithmic barrier. A snippet of the code is shown in listing 1.

Listing 1: `barrier_method()` in Part 1

```

198 """
199 A is a matrix whose number of rows < number of columns.
200 Equality constrained to be on the affine set A_eq @ x = b_eq.
201 """
202 def barrier_method(f,x,t,mu,eps,alpha,beta,A,b,f_ineq,max_iterations=
203     MAX_ITERATIONS):
204     """
205     number of inequalities = m
206     have to start from a strictly feasible point.
207
208     Approximates the ideal barrier function by using a logarithmic barrier
209     function.
210     As t -> \infty, the perturbed objective function approaches the ideal
211     objective function.
212     However, newton's method becomes increasingly difficult to solve for large
213     values of t.
214     Use a centering technique.
215     """
216     # construct barrier
217
218     # [ ln(-f_ineq_1(x)), ... , ln(-f_ineq_m(x)) ]
219     # so that if f_ineq_1 is positive (not feasible), then ln of a negative
220     # number is -infinity
221     # ln(0) gives us nan as well...
222
223     # this is a function of x
224     log_vector = compose_entrywise(lambda x: jnp.log(-x), f_ineq)
225     phi = lambda x: (-1)*jnp.sum(log_vector(x))
226
227     # deform the original objective function by log barrier and t
228     F = lambda t: lambda x: t*f(x) + phi(x)
229     Ft = F(t)
230
231     xt = newtons_method(Ft,x,eps,A,b,alpha,beta,f_ineq) # ?? what is f_ineq
232         doing here
233
234     # compute m = number of constraints.
235     m = jnp.shape(f_ineq(x))[0] # to compute m, get length of f_ineq applied to
236         a point
237
238     # What if A = None? (unconstrained optimization)
239     counter = 0
240     while not barrier_stop_test(m,t,eps):
241         counter+=1
242         t*=mu
243         Ft = F(t) # new objective function
244         xt = newtons_method(Ft,xt,eps,A,b,alpha,beta,f_ineq) # ?? what is f_ineq
245             doing here
246
247         # print(f'Barrier({counter}): ({xt}, {f(x)})')
248
249         if counter>=max_iterations:
250             logger.warning(f'Barrier method failed to converge after
251                             max_iterations = {max_iterations}.\nReturning x_last = {xt}.')
252             break
253
254     return xt

```

Test Cases

We have written a test generator to compare our performance against that of `cvxpy`. Let n, m, p be the dimension of the domain, number of inequality and equality constraints. We will generate objective functions of the form

$$f_0 = 2^{-1} \langle x, Px \rangle_{\mathbb{R}^n} + \langle q, x \rangle_{\mathbb{R}^n} + r,$$

with equality constraint $A_{\text{eq}}x = b_{\text{eq}}$, and inequality (affine) constraints: $A_{\text{ineq}}x \lesssim b_{\text{ineq}}$. The matrix P is positive definite and is generated using Cholesky's method and lower triangularization because

every positive operator admits a 'square-root' decomposition.

To determine the starting point of the algorithm, we have to get creative, because the equality-constraint set has measure zero in the inequality-constraint set. We used cvxpy's solver to obtain a feasible (and optimal) point x^* to the problem, and we perturbed this point by some linear combination of the spanning vectors of the kernel of A_{eq} . This perturbation however may make us go out of the inequality-constrained region, and hence it is run on a while-loop until we get a solution that also satisfies the inequality constraints.

Comparison with cvxpy

One can use the command `compare_against_cvxpy(num_tests)`. The dimension of the domain is programmed to be less than 6 due to limitations in computer resources. ,

```

1 user@s-Laptop ecse507-final % python3 -i barrier_method.py
2 >>> compare_against_cvxpy(10, False)
3 Generating 10 test cases.
4
5   cvxpy_result barrier_result percentage_error n_dom m_ineq p_eq
6 0    -5.881036    -5.880759    0.004711    4      1      1
7 1    -18.002843   -18.002817    0.000148    6      7      1
8 2     0.213485    0.21378164   0.139013    6      3      3
9 3     0.271904    0.27196267   0.021494    5      5      2
10 4   -375.237190  -375.24002   0.000756    3      4      0
11 5    -2.476908    -2.476316   0.023881    3      3      0
12 6    -0.200263   -0.20022428   0.019242    3      5      0
13 7    -0.851441   -0.8514215   0.002338    3      4      1
14 8    10.516634   10.516672   0.000363    3      4      0
15 9   -118.436623  -118.43613   0.000419    5      2      0
16 On average = 0.021236485423195884%

```

Preliminaries for Grid-Optimization

Line numbers are given for `tetris.py`. Tables are printed at the end of each section.

We introduce the n -dimensional setting. Let $(N_{\underline{n}}) = (N_1, \dots, N_n)$ be a list of *counting numbers* (meaning $N_i \in \mathbb{N}^+$), we define our space $X = \prod [0, N_i]$ which is the union of $\overline{N} = \prod N_i$ cubes. If $m \in (\mathbb{Z})^n$, the m -cube is the set $\mathfrak{C}_m = \bigcap_1^n \{x \in \mathbb{R}^n, m_i \leq x_i \leq m_i + 1\}$. The set of all indices m where $\mathfrak{C}_m \subseteq X$ will be denoted by \mathbb{N}_X . Each m -cubes is equal to the intersection of $2n$ affine hyperplanes, an element $x \in X$ iff

$$f_{\text{ineq}}(x) = \begin{bmatrix} \text{id}_{\mathbb{R}^n} \\ -\text{id}_{\mathbb{R}^n} \end{bmatrix} x - \begin{bmatrix} m + \mathbb{1}_{\mathbb{R}^n} \\ -m \end{bmatrix} \lesssim 0, \quad (1)$$

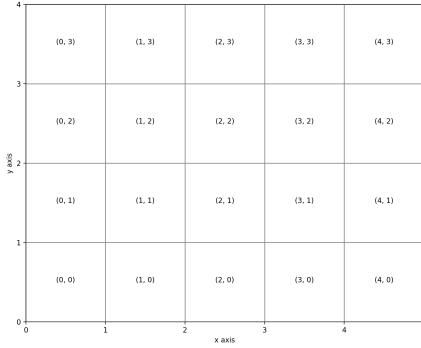
where $\mathbb{1}_{\mathbb{R}^n} = (1, \dots, 1)$ and \lesssim denotes an entrywise inequality. The first (resp. last) n rows in the equation above represent the upper (resp. lower) bound for the coordinates of x , and this is easily achieved using the tensor product, see Listing 2.

Listing 2: Realizing Hyperplanes

```

351 def cell_hyperplanes(m):
352     n = len(m)
353     id_Rn = np.eye(n)
354     A_ineq = np.kron( np.array([[1], [-1]]), id_Rn ) # first (resp. last)
355                                         # n rows serve as the upper (resp. lower) bound for the
356                                         # coordinate functions.
357     b_ineq = np.concatenate([m + np.ones_like(m), -m])
358     f_ineq = lambda x: A_ineq @ x - b_ineq
359     return f_ineq

```

Figure 1: 5×4 Grid in cube coordinates.

Let $f_0: \mathbb{R}^n \rightarrow \mathbb{R}$ be a smooth, convex objective function, and let X , m , \mathbb{N}_X be defined as above. Suppose we are given a disjoint union $X = \bigcup_{\text{finite}} \mathcal{A}_k$ where $\mathcal{A}_k = \bigcup_{\text{finite}} \mathfrak{C}_{m,k}$ and we wish to compute the *maximin* of the function $R_{\text{total}}(\{\mathcal{A}_k\}) = \sum_k \inf \mathcal{A}_k$.

For the two-dimensional case:

$$f_0(x, y) = (x - 2)^2 + 3(y - 1)^2 + e^{2x-3y}, \quad (2)$$

and $X = [0, 5] \times [0, 4]$ is divided into 20 cubes shown in fig. 1

Optimization over m -cubes

It is clear that $\inf \mathcal{A}_k = \min_m \inf \mathfrak{C}_{m,k}$ at every k . For each of the cubes we can run our unconstrained optimization algorithm, with f_{ineq} as in Equation (1). For f_0 as in eq. (2) we have ^{??}. For each \mathfrak{C}_m , the algorithm begins at the center point s and terminates at some point $x^* \in \mathfrak{C}_m$, the *minimizing value* is the number $f_0(x^*)$.¹

Listing 3: Minimizing f_0 over X

			starting_point	minimizer	minimizing_value
1	>>> df				
2					
3	0 0	[0.5, 0.5]	[0.9999851, 0.9999829]	1.367917	
4	1	[0.5, 1.5]	[0.9999875, 1.1260438]	1.299729	
5	2	[0.5, 2.5]	[0.9999904, 2.000003]	4.018353	
6	3	[0.5, 3.5]	[0.9999882, 3.000002]	13.000958	
7	1 0	[1.5, 0.5]	[1.3125881, 0.9999904]	1.159964	
8	1	[1.5, 1.5]	[1.5103639, 1.244948]	0.909367	
9	2	[1.5, 2.5]	[1.891078, 2.0000033]	3.120726	
10	3	[1.5, 3.5]	[1.9921248, 3.0000012]	12.006709	
11	2 0	[2.5, 0.5]	[2.0000033, 0.99999774]	2.718318	
12	1	[2.5, 1.5]	[2.0000117, 1.4042233]	1.298631	
13	2	[2.5, 2.5]	[2.0000687, 2.0000036]	3.135374	
14	3	[2.5, 3.5]	[2.0010076, 3.0000017]	12.006772	
15	3 0	[3.5, 0.5]	[3.0000005, 0.99999964]	21.085575	
16	1	[3.5, 1.5]	[3.0000036, 1.8307542]	4.732004	
17	2	[3.5, 2.5]	[3.0000048, 2.0000062]	5.000038	
18	3	[3.5, 3.5]	[3.0000105, 3.000002]	13.049831	
19	4 0	[4.5, 0.5]	[4.0000005, 0.9999998]	152.413380	
20	1	[4.5, 1.5]	[4.0000014, 1.9999985]	14.389109	
21	2	[4.5, 2.5]	[4.0000024, 2.338457]	12.051242	
22	3	[4.5, 3.5]	[4.0000043, 3.000002]	16.367920	

A plot of the minimizers is shown in Figure 2.

¹Results of Listing 3 can be seen in python by inspecting the variable `df` after running `python3 -i tetriss.py`.

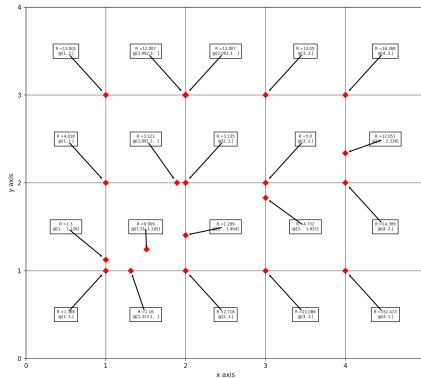


Figure 2: Optimizing over every cube. Red dots are the minimizers.

Tetrominos Schemes

A *scheme* is a disjoint union of X made of tetrominos. The method of converting an ASCII string to a scheme is too complicated to be described in this section (however see later sections for more). The user can define their own scheme to be used in the program by modifying the relevant lines shown in listing 4.²

Listing 4: User defined schemes. Tilings A, B are given. Tiling C is user defined.

```
308 Tiling_A_string = """
309     a a b b c
310     d a a b c
311     d d e b c
312     d e e e c"""
313
314 Tiling_A_colouring = ['red', 'yellow', 'blue', 'green', 'green']
315 Tiling_B_string = """
316     a a b b b
317     c a a b d
318     c e e e d
319     c c e d d"""
320
321 Tiling_B_colouring = ['red', 'green', 'yellow', 'yellow', 'green']
322
323 # Custom Tilings
324 Tiling_C_string = """
325     a b c d d
326     a b c d d
327     a b c e e
328     a b c e e"""
329
```

Computation of Rent

For every tetromino $T = \{\mathfrak{C}_m\}$ in a fixed scheme S , it is obvious that we can compute its *minimizer* and *minimizing value*. This is accomplished using the method `compute_rent_for_scheme()`, which for a given scheme S iterates over all such T and computes the *rent* of S . Listing 5 contains the results of this when applied to Schemes A, B, C, , which also returns the rent of the individual schemes. We consider this computation to be 'elementary', as we can read off the minimizers for each tetromino for a given Scheme from fig. 2 or listing 5, and summing the minimizing values to obtain the rent. We see that **Scheme B produces a higher rent than Scheme A**. A comprehensive plot with all three schemes, and their minimizers is shown in fig. 3, one can generate this using the command `generate_plots()`.

²There is a prompt for user defined schemes using the method `prompted_custom_scheme()`. To use this, replace the `Scheme_C` variable by the result of the prompt. See Listing 6 as well. Alternatively, the user can modify the variable `Scheme_C` and rerun the program.

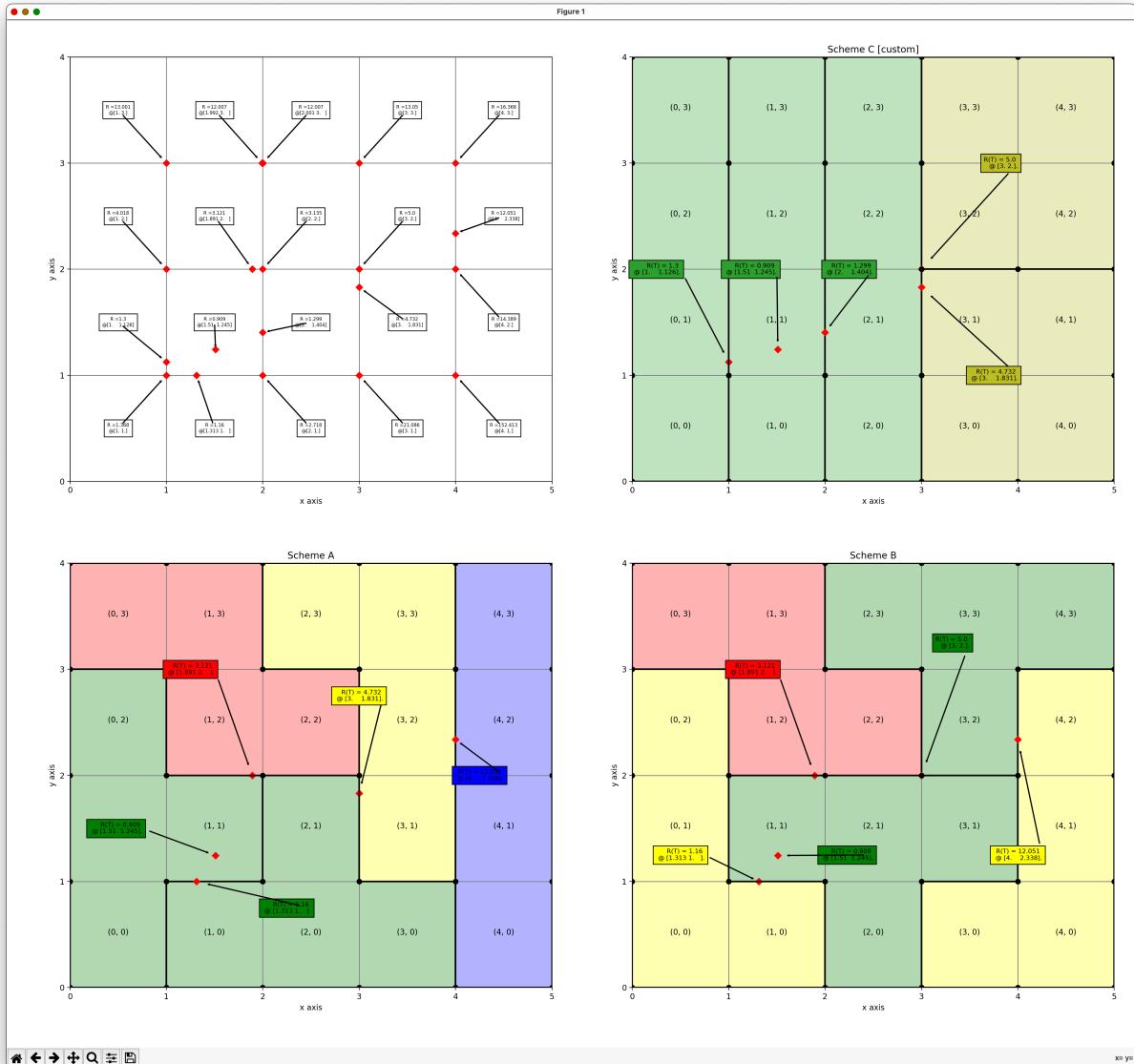


Figure 3: Optimizing over tetrominos for Schemes A, B, and C. Use `generate_plots()` to see this plot.

Listing 5: Results of optimization over all schemes.

```

1 >>> pprint.pprint(all_schemes)
2 [{}{'frame':                                     cells  colour char is_valid  type
3  a  [[0, 3], [1, 3], [1, 2], [2, 2]]    red    a    True  S2_R1  [1.891078, 2.0000033]  minimizer starting_point  minimizing_value
4  b  [[2, 3], [3, 3], [3, 2], [3, 1]]  yellow  b    True  L2_R1  [3.0000036, 1.8307542]  [1.5, 2.5]      3.120726
5  c  [[4, 3], [4, 2], [4, 1], [4, 0]]  blue   c    True  I_R1   [4.0000024, 2.338457]  [3.5, 1.5]      4.732004
6  d  [[0, 2], [0, 1], [1, 1], [0, 0]]  green   d    True  T_R2   [1.5103639, 1.244948]  [4.5, 2.5]      12.051242
7  e  [[2, 1], [1, 0], [2, 0], [3, 0]]  green   e    True  T_R1   [1.3125881, 0.99999094]  [1.5, 0.5]      0.909367
8  'name': 'Scheme A',
9  'rent': 21.97330317},
10 {'frame':                                     cells  colour char is_valid  type
11 a  [[0, 3], [1, 3], [1, 2], [2, 2]]  red    a    True  S2_R1  [1.891078, 2.0000033]  minimizer starting_point  minimizing_value
12 b  [[2, 3], [3, 3], [4, 3], [3, 2]]  green  b    True  T_R3   [3.0000048, 2.0000062]  [3.5, 2.5]      5.000038
13 c  [[0, 2], [0, 1], [0, 0], [1, 0]]  yellow c    True  L2_R3  [1.3125881, 0.99999094]  [1.5, 0.5]      1.159964
14 d  [[4, 2], [4, 1], [3, 0], [4, 0]]  yellow d    True  L1_R3  [4.0000024, 2.338457]  [4.5, 2.5]      12.051242
15 e  [[1, 1], [2, 1], [3, 1], [2, 0]]  green  e    True  T_R3   [1.5103639, 1.244948]  [1.5, 1.5]      0.909367,
16  'name': 'Scheme B',
17  'rent': 22.24133687},
18 {'frame':                                     cells  colour char is_valid  type
19 a  [[0, 3], [0, 2], [0, 1], [0, 0]]  tab:green a    True  I_R1   [0.9999875, 1.1260438]  minimizer starting_point  minimizing_value
20 b  [[1, 3], [1, 2], [1, 1], [1, 0]]  tab:green b    True  I_R1   [1.5103639, 1.244948]  [0.5, 1.5]      1.299729
21 c  [[2, 3], [2, 2], [2, 1], [2, 0]]  tab:green c    True  I_R1   [2.0000117, 1.4042233]  [1.5, 1.5]      0.909367
22 d  [[3, 3], [4, 3], [3, 2], [4, 2]]  tab:olive d    True  SQUARE  [3.0000048, 2.0000062]  [2.5, 1.5]      1.298631
23 e  [[3, 1], [4, 1], [3, 0], [4, 0]]  tab:olive e    True  SQUARE  [3.0000036, 1.8307542]  [3.5, 2.5]      5.000038
24  'name': 'Scheme C [custom]',
25  'rent': 13.23976867}]

```

Listing 6: Prompted user defined scheme

```

1 Frame_C = prompted_custom_scheme()
2 compute_rent_for_scheme(Frame_C)
3 all_schemes

```

High-dimension Generalizations

The program `tetris.py` generalizes easily to arbitrary n -dimensional domains. We can take the *tensor product* of 1-dimensional indexing sets to obtain some kind of lexicographical data structure.³

Example

Postponing further discussion regarding the implementation, we offer an example in \mathbb{R}^3 listing 7, where

$$f_0(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 3)^2 + 3y \quad \text{on } X = [0, 3] \times [0, 3] \times [0, 3].$$

Listing 7: Optimizing f_0 in higher dimensions using a tensored data structure.

```

1 user@s-Laptop ecse507-final % python3 -i tetris.py
2 Dataframe detected. Loading results from /Users/user/ecse507-final/
      part2_optimal_points_tensored.csv.
3 Dataframe loaded.
4 >>> current_path = pathlib.Path('.').resolve()
5 >>> dpath_v3 = current_path/'a.csv'
6 >>> f0 = lambda x: (x[0]-1)**2 + (x[1]-2)**2 + (x[2]-3)**2 + 3*x[1]
7 >>> GRID_N = [3,3,3]
8 >>> optimize_over_each_cell(dpath_v3,f0,GRID_N)
9 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
10 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
11 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
12 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
13 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
14 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
15 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
16 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
17 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
18 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
19 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
20 NewtonTest unsatisfied after 100 iterations. Are we at the boundary?
21 Finished optimizing over each cell, saving to /Users/user/ecse507-final/a.csv
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 >>>

```

starting_point	minimizer	minimizing_value
0 0 [0.5, 0.5, 0.5]	[0.996863, 0.5, 0.9999505]	7.7500296
1 [0.5, 0.5, 1.5]	[0.99693114, 0.5, 1.9999902]	4.750029
2 [0.5, 0.5, 2.5]	[0.9968636, 0.5, 2.9968636]	3.7500196
1 0 [0.5, 1.5, 0.5]	[0.9969312, 1.0000174, 0.9999951]	8.000046
1 [0.5, 1.5, 1.5]	[0.99686724, 1.0000198, 1.9999901]	5.0000496
2 [0.5, 1.5, 2.5]	[0.99693114, 1.0000174, 2.996931]	4.0000362
2 0 [0.5, 2.5, 0.5]	[0.99693155, 2.0000052, 0.9999952]	10.000044
1 [0.5, 2.5, 1.5]	[0.9969312, 2.0000064, 1.9999902]	7.000048
2 [0.5, 2.5, 2.5]	[0.99693155, 2.0000057, 2.9969316]	6.000036
1 0 0 [1.5, 0.5, 0.5]	[1.003137, 0.5, 0.99999505]	7.7500296
1 [1.5, 0.5, 1.5]	[1.0030689, 0.5, 1.9999902]	4.750029
2 [1.5, 0.5, 2.5]	[1.0031364, 0.5, 2.9968636]	3.7500196
1 0 [1.5, 1.5, 0.5]	[1.0030688, 1.0000174, 0.9999951]	8.000046
1 [1.5, 1.5, 1.5]	[1.0031327, 1.0000198, 1.9999901]	5.0000496
2 [1.5, 1.5, 2.5]	[1.0030689, 1.0000174, 2.996931]	4.0000362
2 0 [1.5, 2.5, 0.5]	[1.0030684, 2.0000052, 0.9999952]	10.000044
1 [1.5, 2.5, 1.5]	[1.0030688, 2.0000064, 1.9999902]	7.000048
2 [1.5, 2.5, 2.5]	[1.0030684, 2.0000057, 2.9969316]	6.000036
2 0 0 [2.5, 0.5, 0.5]	[2.0000098, 0.5, 0.9999951]	8.750038
1 [2.5, 0.5, 1.5]	[2.0000098, 0.5, 1.9999901]	5.750039
2 [2.5, 0.5, 2.5]	[2.0000098, 0.5, 2.996931]	4.750029
1 0 [2.5, 1.5, 0.5]	[2.000012, 1.0000234, 0.999994]	9.000071
1 [2.5, 1.5, 1.5]	[2.0000098, 1.0000191, 1.9999905]	6.0000577
2 [2.5, 1.5, 2.5]	[2.0000098, 1.0000198, 2.9968672]	5.000049
2 0 [2.5, 2.5, 0.5]	[2.0000098, 2.0000064, 0.99999523]	11.000057
1 [2.5, 2.5, 1.5]	[2.0000095, 2.0000062, 1.9999906]	8.000056
2 [2.5, 2.5, 2.5]	[2.0000098, 2.0000064, 2.9969313]	7.000048

³The *lexicographical ordering* (or dictionary ordering) of basis vectors in $\otimes_1^N \mathbb{R}(J_i)$ is the correspondence between $\{1, \dots, \prod_1^N J_i\}$ and $\{\otimes_1^N e_{\mathbb{R}(J_i)}^{\alpha_i}, 1 \leq \alpha_i \leq J_i, 1 \leq i \leq N\}$ such that indices α_i corresponding to a larger i value (closer to N) take precedence during enumeration from 1 to $\prod_1^N J_i$. If $\alpha = (\alpha_1, \dots, \alpha_N) \in \otimes_{i=1}^N \mathbb{N}^+(J_i)$,

$$\alpha \cong (\alpha_1 - 1) \prod_2^N J_i + (\alpha_2 - 1) \prod_3^N J_i + \dots + (\alpha_{N-1} - 1) J_N + \alpha_N = \sum_{i=1}^N (\alpha_i - 1) \prod_{j=i+1}^N J_j$$

It is easy to generalize the algorithm for minimizing over each \mathcal{A}_k (as in the notation of the beginning of this document) to higher dimensions. In particular, we have included an example in the function `higher_dimensional_example()`.⁴ Keep in mind that dataframes are cached to minimize loading times. If the function f_0 or any other parameters are modified (other than the scheme), one should delete the cached `.csv` file, found in the same folder as the program.

```

1 >>> result, df_new = higher_dimensional_example()
2 Dataframe detected. Loading results from /Users/user/ecse507-final/high_dim.csv.
3 Dataframe loaded.
4 {'frame': {'f'cells': [(2, 0, 0), (2, 1, 1), (0, 0, 1), (1, 0, 2)],
5             'minimizer': array([1.0031364, 0.5      , 2.9968636]),
6             'minimizing_value': 3.7500196},
7             {'cells': [(1, 2, 2),
8                     (2, 2, 1),
9                     (2, 2, 0),
10                    (1, 2, 0),
11                    (2, 1, 0),
12                    (0, 1, 2)],
13             'minimizer': array([0.99693114, 1.0000174 , 2.996931  ]),
14             'minimizing_value': 4.0000362},
15             {'cells': [(0, 1, 0),
16                     (0, 0, 0),
17                     (1, 0, 1),
18                     (0, 0, 2),
19                     (0, 2, 1),
20                     (2, 1, 2),
21                     (2, 2, 2)],
22             'minimizer': array([0.9968636, 0.5      , 2.9968636]),
23             'minimizing_value': 3.7500196},
24             {'cells': [(2, 0, 2),
25                     (0, 1, 1),
26                     (0, 2, 2),
27                     (0, 2, 0),
28                     (1, 1, 2),
29                     (1, 1, 1),
30                     (1, 0, 0),
31                     (2, 0, 1),
32                     (1, 2, 1),
33                     (1, 1, 0)],
34             'minimizer': array([1.0030689, 1.0000174, 2.996931  ]),
35             'minimizing_value': 4.0000362}],
36             'name': 'High Dimensional Example',
37             'rent': 15.5001116}

```

ASCII Converter

In this section, we discuss some of the methods of converting an ASCII input to a 2D partition. First, we prompt the user for the number of rows and columns of the cell. The dimensions of the grid has to satisfy $\text{rows} \times \text{cols} \equiv 0 \pmod{4}$. It is also easy to write a function that extracts the positioning of the occurrences of a specific character (i.e 'a') in a string like

1 a b c d d
2 a b c d d
3 a b c e e
4 a b c e e

by scanning each row, and perhaps by trimming whitespaces and tabs if necessary.

Since each letter a, b, c, d, e must occur exactly 4 times, and the cells spanned by each corresponding letter have to be connected, we must check if the user is even giving us a tetromino-union of X. This is also easy to verify as the L^1 norm is designed precisely for this purpose, one would use something like:

For every $c \in \{c_1, c_2, c_3, c_4\} = \mathcal{T}$, is there some $c' \in \mathcal{T}$ where $|c - c'|_{L^1} = 1$?

⁴simply run `python3 -i tetris.py` then `higher_dimensional_example()`.

If the answer to the above is positive, then \mathcal{T} is a tetromino.⁵

Generalization to Regions that are Disks

Suppose we are given a finite collection of closed disks $\{D_j = \overline{B}(x^j, r^j)\}_{j=1}^M$ in the grid $X = \prod_{j=1}^n [0, N_j]$ the necessary and sufficient conditions for admissibility of a configuration are

$$\begin{cases} |x^j - x^k| > r_j + r_k & \forall 1 \leq j, k \leq M \\ \min(|x_i^j|, |x_i^j - N_i|) > r_j & \forall 1 \leq j \leq M, 1 \leq i \leq n \\ x_i^j \in \{1, \dots, N_i\} & \forall 1 \leq j \leq M, 1 \leq i \leq n \end{cases} \quad (3)$$

Suppose the conditions in eq. (3) are met, and f_0 is smooth and convex on X . We can use the same algorithm to maximize R_{total} over the union of the balls. Denote the minimizer, minimum pairs of each ball by \mathcal{M} , where

$$\mathcal{M} = \left\{ \left(y^j, f_0(y^j) \right), y^j = \operatorname{argmin}_{z \in D_j} f_0(z) \right\}. \quad (4)$$

It is clear that $R_{\text{total}} = \max \sum_{j=1}^M \inf_{|z - x^j| \leq r^j} f_0(z) = \sum \mathcal{M}$. To compute $(y^j, f_0(y^j))$, we can define each closed disk D_j using the (closed) sublevel set of the distance function

$$D_j = \operatorname{dist}_{x^j}^{-1}([0, r_j]) \quad \text{where} \quad \operatorname{dist}_x(y) = |x - y|$$

is continuous almost by definition of the standard topology on \mathbb{R}^n .

Modification Ideas for Annuli instead of Disks

In this final section of the report, we consider the case where $X' = \bigcup_{j=1}^M A_j$, where $A_j = \{z \in \mathbb{R}^n, s_j \leq |z - x^j| \leq r_j\}$. We assume that similar conditions to eq. (3) and the configuration that we are concerned with is admissible.

Suppose we can minimize f_0 over every annuli, and obtain \mathcal{M} as in eq. (4) but with A_j instead of D_j , then

$$R_{\text{total}}(\{A_j\}) = \sum_j f_0(y_j).$$

So that for the remainder of this section, we will only concern ourselves with optimizing f_0 over any admissible annuli $A = A_j$. We write $A = \{z \in \mathbb{R}^n, s \leq |z - x_0| \leq r\}$, $B = \{z \in \mathbb{R}^n, |z - x_0| \leq r\}$, let $p_0 = \operatorname{argmin}_{z \in A} f_0(z)$ and $p_1 = \operatorname{argmin}_{z \in B} f_0(z)$. We can run our algorithm on the full-disk B , this gives us an approximation of p_1 . If $p_1 \in A$, then there is nothing to do, as $p_0 = p_1$ (as measured by f_0 or *modulo fibers of f_0*). It is the case of $p_1 \notin A$ that is of interest to us. For this, we need a geometric lemma.

⁵in practice, we also have to check that $c_i \in X$ and are lattice points.

Lemma 1.1: Where is the minimizer?

Let f_0 be a non-constant, smooth, convex function on X , and A, B, p_0, p_1 be as above. If $p_1 \notin A$, then $p_0 \in \partial A \setminus \partial B = \{z \in \mathbb{R}^n, |z - x_0| = s\}$.

Proof. Suppose for contradiction that $|p_0 - x_0| = s + \varepsilon$, the line segment starting at p_0 in the direction of p_1 can be made so small that it lies entirely within A . Let $t > 0$ where $p_t = p_0 + t(p_1 - p_0)$ such that $s \leq |p_t - x_0| \leq s + \varepsilon$. By the convexity of f_0 , we have our desired contradiction:

$$f_0(p_t) \leq f_0(p_0) + t(f_0(p_1) - f_0(p_0)) < f_0(p_0).$$

■

Let $C = \{z \in \mathbb{R}^n, |z - x_0| = s\}$ be the inner-boundary of A , I do not know of an easy way for us to find p_0 , so I will propose a few methods.

Vanishing Tangential Gradient

We can view C' as the boundary of a positively oriented (? I forgot the word) submanifold, so that C' is equipped with a unit-tangential vector field (? word), we can produce a smooth function $g = \langle \text{grad } f_0, \mathcal{T}_{C'} \rangle_{T\mathbb{R}^n} \in C^\infty(C', \mathbb{R})$ and solve for $g = 0$.⁶ The benefits of this is that we can use some intermediate value theorem argument when g changes sign.

Let me throw something random out there... By precomposing f_0 by a diffeomorphism (and destroying all of its convex structure), we can assume that $x_0 = 0$ and $s = 1$. To find a minimizing solution to $f_0|_C$, we write $f_0(e^{i2\pi\theta})$ for all $\theta \in [0, 1]$. Suppose that f_0 changes sign between $[\theta_0, \theta_1]$, then Rolle's Theorem will guarantee a critical point (along the submanifold).

Approximate C' using a sequence of convex submanifolds

We can probably, approximate the non-convex set by patching together convex bodies and do a search that way. Not sure how effective this is.

Change the objective function

We can bend the objective function f_0 such that it discourages going inside $E = \{z \in \mathbb{R}^n, |z - x_0| \leq s\}$ in the first place. Not sure how possible this is to accomplish without destroying the convexity property. A simple appeal of adding some $g_0 = 2^{-1}\rho(z)|z - x_0|^2$ where $\rho(z)$ is some smooth mollifying function (that is possibly compactly supported) will not work because $h_0 = f_0 + g_0$ may fail to be convex (draw a picture and you will see that the line segment from p_0 to any point $p_2 \in \{z \in \mathbb{R}^n, |z - x_0| = r\}$ punctures the epigraph).

We can also try adding two quadratics in the form of $(x - q_0)^2 + (x - q_1)^2$, where $q_0 \in \partial B$ and $q_1 \in C'$, perhaps we can also write:

$$q_0(\theta) = re^{i2\pi\theta} \quad \text{and} \quad q_1(\theta) = se^{i2\pi\theta}.$$

Try plotting this on desmos in the one dimensional case, try $g(x) = (x + 1)^2 + (x - a)^2$, where $a \in [-10, +10]$ and run the animation on desmos, seems promising!.

⁶sorry for notation

Finally, we can try optimizing for $g_0 = f_0 + \sum_{j=1}^L (sL)^{-1} (x - q_j)^2$ where $q_j = se^{i\theta_j}$ and $\theta_j = 2\pi j L^{-1}$ are equally spaced points on the circle.

Noteworthy Things

We mention a few of the interesting things.

Tensor Products using `pandas.MultiIndex`

There is a built-in way of computing tensor products of indexing sets using

```
pandas.MultiIndex.from_product(q_MultiIndex),
```

where `q_MultiIndex = list(map(range, [3,4,5]))` is a list of intervals. This gives us the iterator shown in listing 8.

Listing 8: easy tensor products

```

1 >>> q_MultiIndex = list(map(range, [3,4,5]))
2 >>> q_MultiIndex = pd.MultiIndex.from_product(q_MultiIndex)
3 >>> q_MultiIndex = list(q_MultiIndex)
4 >>> pprint.pprint(q_MultiIndex)
5 [(0, 0, 0),
6  (0, 0, 1),
7  (0, 0, 2),
8  (0, 1, 0),
9  (0, 1, 1),
10 (0, 1, 2),
11 (0, 2, 0),
12 (0, 2, 1),
13 (0, 2, 2),
14 (0, 3, 0),
15 (0, 3, 1),
16 (0, 3, 2),
17 (1, 0, 0),
18 (1, 0, 1),
19 (1, 0, 2),
20 (1, 1, 0),
21 (1, 1, 1),
22 (1, 1, 2),
23 (1, 2, 0),
24 (1, 2, 1),
25 (1, 2, 2),
26 (1, 3, 0),
27 (1, 3, 1),
28 (1, 3, 2),
29 (2, 0, 0),
30 (2, 0, 1),
31 (2, 0, 2),
32 (2, 1, 0),
33 (2, 1, 1),
34 (2, 1, 2),
35 (2, 2, 0),
36 (2, 2, 1),
37 (2, 2, 2),
38 (2, 3, 0),
39 (2, 3, 1),
40 (2, 3, 2)]
```

Borders of Tetrominos

For a cell in a tetromino $c \in \mathcal{T}$, an easy way to determine whether or not a border should be drawn is to check whether or not the adjacent cell $c' = c + e_k$ where e_k is a standard basis vector is occupied by a cell in your own tetromino \mathcal{T} .

If $c' \notin \mathcal{T}$, then we can draw the 'border' (a $n-1$ submanifold with corners) centered at the midpoint $m = (c + c')2^{-1}$, which is just a L^∞ cube in \mathbb{R}^{n-1} with radius 1.

Classification of Tetrominos

There is probably an easy way of classifying all of the tetrominos and their rotated versions, we went with the rote and brute-force way of writing out all possible rotations and reflections. Shown in Listing 9.

```

1 shapes = {
2 # Square Shape
3 'SQUARE': """
4         a a
5         a a
6 """
7 # L1 Shape
8 'L1_R1': """
9         a a
10        a b
11        a b
12 """
13 'L1_R2': """
14         a a a
15         b b a
16 """
17 'L1_R3': """
18         b a
19         b a
20         a a
21 """
22 'L1_R4': """
23         a b b
24         a a a
25 """
26 # L2 Shape
27 'L2_R1': """
28         a a
29         b a
30         b a
31 """
32 'L2_R2': """
33         b b a
34         a a a
35 """
36 'L2_R3': """
37         a b
38         a b
39         a a
40 """
41 'L2_R4': """
42         a a a
43         a b b
44 """
45 # T Shape
46 'T_R1': """
47         b a b
48         a a a
49 """
50 'T_R2': """
51         a b
52         a a
53         a b
54 """
55 'T_R3': """
56         a a a
57         b a b
58 """
59 'T_R4': """
60         b a
61         a a
62         b a
63 """
64 # S1 Shape
65 'S1_R1': """
66         b a a
67         a a b
68 """
69 'S1_R2': """
70         a b
71         a a
72         b a
73 """
74 # S2 Shape
75 'S2_R1': """
76         a a b
77         b a a
78 """
79 'S2_R2': """
80         b a
81         a a
82         a b
83 """
84 # I Shape
85 'I_R1': """
86         a
87         a
88         a
89         a
90 """
91 'I_R2': """
92         a a a a
93 """
94 }

```

Listing 9: Classification = Huge Pain