

Symplectic Geometry

A **symplectic manifold** is a $2n$ -dimensional C^∞ manifold M with a closed non-degenerate 2-form ω , called the **symplectic form**.

Symplectic geometry originates from the Hamilton's formulation of classical mechanics [Arn13; Abr19] where the **phase space** takes on the structure of a **symplectic manifold**. Solutions to **Hamilton's equations** are integral curves of the **Hamiltonian vector field**.

Cotangent Bundle

If X is a n -dimensional C^∞ manifold, its **cotangent bundle** T^*X is equipped with the **canoncial symplectic form** ω^a . In the case of $X = \mathbb{R}^n$, then $T^*X = \mathbb{R}^{2n}$ and the **standard symplectic form** ω_0 is

$$\omega_0(p)(x, y) \stackrel{\Delta}{=} \sum_1^n \det \begin{bmatrix} x_i & y_i \\ x_{n+i} & y_{n+i} \end{bmatrix}, \quad \forall x, y \in T_p \mathbb{R}^{2n}, p \in \mathbb{R}^{2n}.$$

If $H \in C^\infty(\mathbb{R}^{2n}, \mathbb{R})$ its Hamiltonian vector field in coordinates is

$$X_H(p) = J_{2n} \nabla H(p), \quad \text{where} \quad J_{2n} \stackrel{\Delta}{=} \begin{bmatrix} 0 & \text{id}_{\mathbb{R}^n} \\ -\text{id}_{\mathbb{R}^n} & 0 \end{bmatrix}, \quad p \in \mathbb{R}^{2n}.$$

Regular Hamiltonians

Let (M, ω) be a symplectic manifold. $H \in C^\infty(M)$ is **regular** if there is an open, non-empty $U \subseteq M$ and compact $K \subseteq M \setminus \partial M$ such that $0 \leq H(x)$, $H(y) = 0$, and $H(z) = \max(H) < \infty$ for all $x \in M$, $y \in U$, and $z \notin K$

$$\mathcal{H}(M, \omega) \stackrel{\Delta}{=} \{H \in C^\infty(M) \text{ is regular}\}.$$

The **magnitude** of $H \in \mathcal{H}(M, \omega)$ is $\text{mag}(H) \stackrel{\Delta}{=} \max(H)$ is a measure of the extremeness of a special class of Hamiltonians on M .

Admissible Hamiltonians

$H \in \mathcal{H}(M, \omega)$ is **admissible** if all periodic orbits^b of $\dot{x} = X_H(x)$ have period $T > 1$ (if there are any).

$$\mathcal{H}_{ad}(M, \omega) \stackrel{\Delta}{=} \{H \in C^\infty(M) \text{ is admissible}\}.$$

^aIf (X, g) is a **Riemannian manifold**, T^*X (with local coordinates $(q, p) \in T^*X$) serves as the natural setting for the Hamilton formalism with $H(q, p) = V(q) + T(q, p)$ where $T(q, p) \stackrel{\Delta}{=} 2^{-1}g(q)(p, p)$ and $V \in C^\infty(X)$ under the tangent-cotangent identification [Sil04; Lan12; Lee13]. The term $T(q, p)$ is the **kinetic energy** of the system, while $V(q)$ is the **potential energy**. If $\partial_t H = 0$, then $H = \text{total energy}$.

^bWe use the term **orbit** only for **non-constant** solutions



Regular Hamiltonian, figure taken from [HZ12].

Symplectic Capacities

A **symplectic capacity** associates a symplectic manifold (M, ω) a number $\mathcal{C}(M, \omega) \in [0, \infty]$ satisfying

Monotonicity $\mathcal{C}(M, \omega) \leq \mathcal{C}(N, \eta)$ if M embeds into N symplectically,

Conformality $(M, \alpha\omega) = |\alpha|(M, \omega)$ for all $\alpha \neq 0$, and

Non-triviality $\mathcal{C}(B(1), \omega_0) = \mathcal{C}(Z(1), \omega_0) = \pi$.^a

Hofer-Zehnder Capacity

The **Hofer-Zehnder capacity** of a symplectic manifold (M, ω) is

$$\mathcal{C}_0(M, \omega) \stackrel{\Delta}{=} \sup \{ \text{mag}(H), H \in \mathcal{H}_{ad}(M, \omega) \}.$$

From [HZ12; Jia93]: \mathcal{C}_0 is a symplectic capacity, and $\mathcal{C}_0(U, \omega) < \infty$ for open and bounded $U \subseteq T^*(\mathbb{T}^n)$ or $U \subseteq T^*(\mathbb{T}^n \times \mathbb{R}^m)$.

From [HZ12]: Let (M, ω) be a symplectic manifold with $\mathcal{C}_0(M, \omega) < \infty$, $H \in C^\infty(M)$ and

$$\bar{r}(H) \stackrel{\Delta}{=} \left\{ c \in \mathbb{R}, \begin{array}{l} H^{-1}(c) \text{ nonempty and compact,} \\ dH(z) \neq 0 \text{ for all } z \in H^{-1}(c) \end{array} \right\}.$$

Then $H^{-1}(c)$ has a periodic orbit for Lebesgue a.e. $c \in \bar{r}(H)$.

Two Results of the Project

For two well-known **chaotic dynamical systems**^b, it is proved in [Li24] that

the **linked pendulum** system ($n \geq 2$) admits a periodic orbit on *almost every* regular hypersurface^c, and

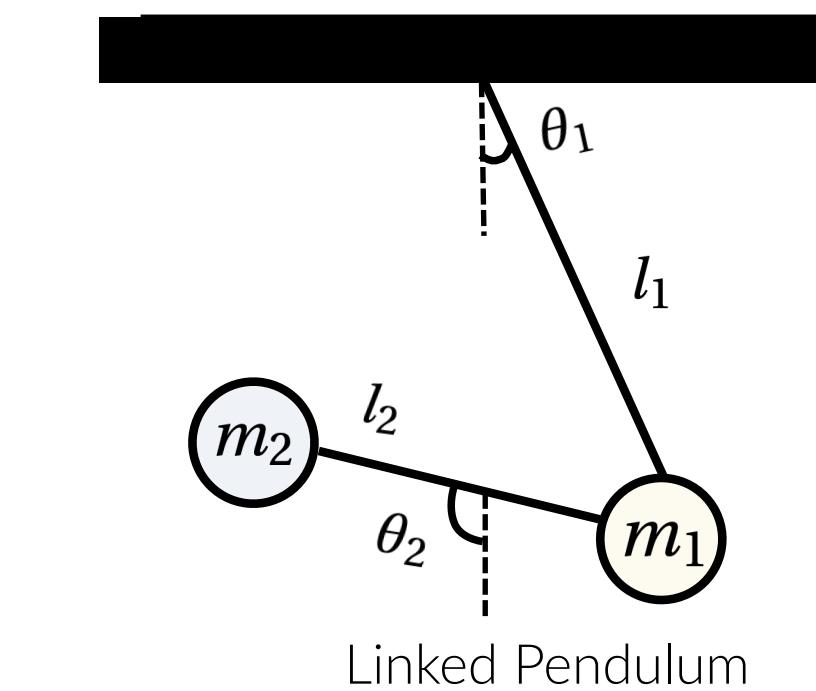
the **elastic pendulum** ($n \geq 2$) admits a periodic orbit on *almost every* regular hypersurface.

^awhere $B(r) \stackrel{\Delta}{=} \{z = (x, y) \in \mathbb{R}^{2n}, |z|^2 < r^2\}$ and $Z(r) \stackrel{\Delta}{=} \{z = (x, y) \in \mathbb{R}^{2n}, x_1^2 + y_1^2 < r^2\}$ for $r > 0$.

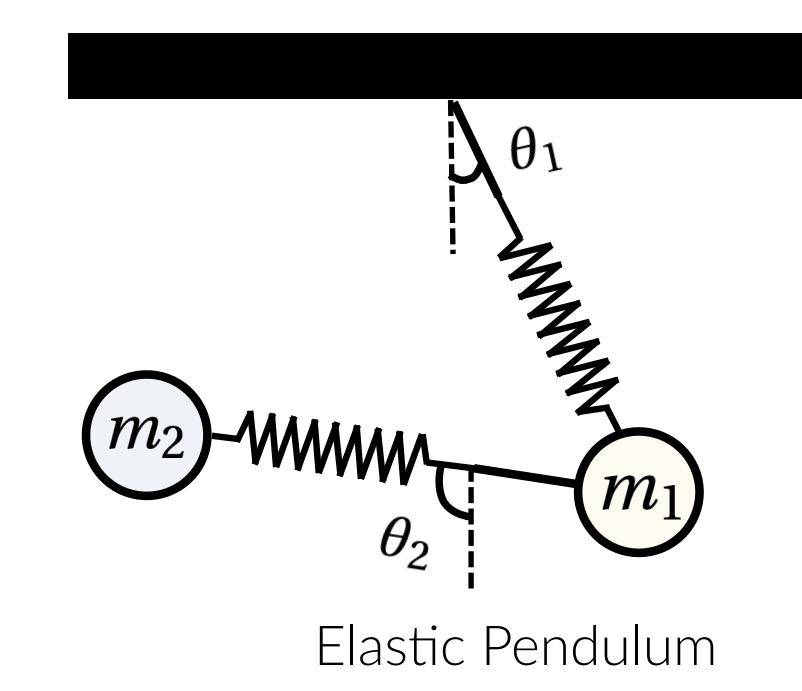
^b1) sensitive to initial conditions and 2) trajectories are dense in the phase space [Str18].

^cA regular hypersurface $S \subseteq M$ is a codimension-1submanifold of M such that $S = H^{-1}(c)$ for some $H \in C^\infty(M)$, $c \in r(H)$ where

$$r(H) \stackrel{\Delta}{=} \{c \in \mathbb{R}, \quad H^{-1}(c) \text{ nonempty,} \quad dH(z) \neq 0 \text{ for all } z \in H^{-1}(c) \}.$$



Linked Pendulum



Elastic Pendulum

Remarks

Celestial Mechanics

\mathcal{C}_0 is unsuitable for systems **where the level sets of the Hamiltonian are not compact**. In particular: for the n -body system ($n \geq 2$), we have $\bar{r}(H) = \emptyset$.^a

Time-varying Systems

\mathcal{C}_0 is unsuitable for studying time-varying systems (whether **dissipative** or **with inputs**) due to its reliance on a specialized variational principle. This obstructs initial attempts to use \mathcal{C}_0 for **control Hamiltonian systems**.

Bibliography

- [Arn13] V.I. Arnol'd. *Mathematical Methods of Classical Mechanics*. Springer Science & Business Media, Apr. 2013. ISBN: 9781475720631.
- [Abr19] Ralph Abraham. *Foundations Of Mechanics*. CRC Press, Apr. 2019. ISBN: 9780429709050.
- [Sil04] Ana Cannas da Silva. *Lectures on Symplectic Geometry*. Springer, Oct. 2004. ISBN: 9783540453307.
- [Lan12] Serge Lang. *Fundamentals of Differential Geometry*. Springer Science & Business Media, Dec. 2012.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. 2nd ed. Springer Science & Business Media, Mar. 2013.
- [HZ12] Helmut Hofer and Eduard Zehnder. *Symplectic Invariants and Hamiltonian Dynamics*. Birkhauser, Dec. 2012.
- [Jia93] Mei-Yue Jiang. "Hofer-Zehnder symplectic capacity for two-dimensional manifolds". In: *Proceedings of the Royal Society of Edinburgh: Section A Mathematics* 123.5 (1993), pp. 945–950. DOI: 10.1017/s0308210500029590.
- [Str18] Steven H. Strogatz. *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering*. CRC Press, May 2018. ISBN: 9780429961113.
- [Li24] Anson Li. *Periodic Motions in Natural and Designed Systems*. 2024.

^aThe issue is the following: any **increase in kinetic energy** of the bodies can always be compensated by an equally large **decrease in the potential energy** (since $V(q) < 0$) by moving the bodies closer together.