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1. Preliminaries

Notation and Measure Theory

• N= {0,1,2, . . .} is the set of natural numbers (which in-
cludes 0),

• N+ = {1,2, . . .} is the set of counting numbers,
• Z= {0,−1,+1, . . .} is the set of integers,
• Q is the set of rational numbers,
• R is the set real numbers,
• C is the set of complex numbers, and
• R+ = [0,+∞) are the non-negative reals.

Suppose that X and Y are normed vector spaces over C.

• L(X ,Y ) = linear maps T : X → Y .
• L(X ,Y ) = cont. linear maps T : X → Y .
• X ∗ = continuous dual of X

Let (X ,M) be a measurable space.

• E(M) = complex-valued meas. functions on X .

Sequences will be indexed by N+ and will be assumed to
take values in a vector space. We say that xn is finitely sup-
ported if xn = 0 for all sufficiently large n.

• l0 = sequences that are finitely supported,
• c0 = sequences that converge to 0 (range is normed),
• l+ = real-valued sequences xn ≥ 0 for n ≥ 1.
• l++ = real-valued sequences xn > 0 for n ≥ 1.

We will always assume that all measures are σ-finite. For
most of the theorems however, this assumption is not nec-
essary. Let µ be a σ-finite measure on M.

• A measurable function ϕ : X → C is a simple function
if its range ϕ(X ) is a finite subset of C. Every simple
function is of the form

ϕ=∑n
1 c jχE j where c j ∈C,E j ∈M, j = 1, . . . ,n.

• Σ(µ) = v.s. of simple functions,
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• Σ0(µ) = v. subspace of Σ, vanish outside a µ-finite set

Σ0(µ) = {ϕ ∈Σ, µ({ϕ 6= 0}) <∞}.

• L∞(µ) = B. space of essentially bdd functions, with
norm

‖ f ‖∞ = inf
{

a ≥ 0,µ({| f | > a}) = 0
}

∀ f ∈ L∞(µ)

• L∞
0 (µ) = v. subspace of L∞(µ), vanish outside a µ-

finite set.
• L+(µ) = meas. functions, values in [0,∞].1

The subsets Σ+(µ), and Σ+
0 (µ) are defined as positive cones

of Σ(µ) and Σ0(µ), whose elements in Σ+(µ) and Σ+
0 (µ) take

values in [0,∞). We recall that if g ∈ L+(µ), the integral with
respect to µ is the supremum over the integral of its non-
negative simple subordinates.∫

X
g (x)dx = sup

{∫
X
ϕ(x)dx , ϕ≤ g , ϕ ∈Σ+

}
(1)

If µ is σ-finite or supp(g ) = {x ∈ X , g (x) 6= 0} is σ-finite, we
can shrink the family of lower approximants on the right
hand side of the Equation (1).∫

X
g (x)dx = sup

{∫
X
ϕ(x)dx , ϕ≤ g , ϕ ∈Σ+

0

}
. (2)

Lemma 1.1 [Fol13, Thm 2.10]

Let (X ,M) be a measurable space, if g : X → C is mea-
surable, there exists a sequence of simple functions
{ϕn} ⊆Σ, such that
1. ϕn → g pointwise,
2. |ϕn |↗ |g | pointwise.
3. If µ is σ-finite, or µ({| f | > ε}) < ∞ for all ε, we can

take {ϕn} ⊆Σ0.

Any sequence satisfying first two properties in Lemma 1.1
is said to be an increasing sequence of subordinates of g . If
{ fn} is any such sequence, then

∫ | fn(x)|dx ↗∫ |g (x)|dx.

Let p be a number in [1,+∞),

Lp (µ) = { f ∈M,
∫

X | f (x)|p dx <+∞}, and

Lp (µ) =Lp (X ,µ)/pw a.e.

If f ∈Lp (µ) or Lp (µ), we write

‖ f ‖p = (∫
X | f (x)|p dx

)1/p . (3)

It is clear that Lp (µ) is a B. space for p ∈ [1,∞].

1.1. Local Integrability

1[0,∞] has the extended Borel σ-algebra. See [Fol13, Chap 2.1, 2.2, Ex
2.1, 2.2, 2.4]

Definition 1.2
A measurable function g : X →C is locally integrable if∫

E
|g (x)|dx <∞ for all E ∈M, µ(E) <∞.

The v.s. of all locally integrable functions (modulo a.e.
sets) is denoted by L1

loc (µ).

If g ∈ Lp for p ∈ (1,∞] then we can identify g ∈ L1
loc because∫

E
|g (x)|dx ≤

∫
E

(|g (x)|p +1)dx <∞. (4)

Let g ∈ L1
loc , consider the scalar product on L∞

0

〈g , f 〉 =
∫

X
g (x) f (x)dx ∀ f ∈ L∞

0 . (5)

The integral in Equation (5) converges absolutely, since

|g (x) f (x)| ≤ ‖ f ‖∞χ{ f 6=0}|g (x)| ∈ L1.

Given a locally integrable function g , the next proposi-
tion shows that its Lq norm (which is possibly equal to
∞) can be computed through its scalar product on L∞

0 .

Proposition 1.3 [Fol13, Thm 6.13, 6.14]

Given a locally integrable g , it is in Lq iffa

Mq (g ) = sup
{
|〈g , f 〉|, f ∈ L∞

0 , ‖ f ‖p = 1
}
<∞, (6)

and if this is the case, then ‖g‖q = Mq (g ).

aimplicit q ∈ [1,∞], p conjugate to q

Proof of Proposition 1.3. We can break up proposition into
two statements and prove them separately.

(i) If g ∈ Lq , then Mq (g ) ≤ ‖g‖q .

(ii) If g ∈ L1
loc and Mq (g ) < ∞, then g ∈ Lq and ‖g‖q ≤

Mq (g ).

Statement i) says that if g ∈ Lq , its scalar product on { f ∈
L∞

0 ,‖ f ‖p = 1} is uniformly bounded by its Lq norm. This
follows from Hölder’s inequality:

|〈g , f 〉| ≤ 〈|g |, | f |〉 ≤ ‖ f ‖p‖g‖q , for all f ∈ L∞
0 .

Hence Statement i) is proven. We turn to the proof of
Statement ii).
1. If q ∈ [1,∞), we know that supp(g ) is always σ-finite (in

the case where µ is not σ-finite, see Lemma 3.15). Let
{ϕn} ⊆ Σ0 be an increasing sequence of subordinates of
g (justified by Lemma 1.1). Then,∫

|g (x)|q dx = sup
n

∫
X
|ϕn(x)|q dx .

To show that ‖g‖q ≤ Mq (g ), it suffices2 to con-

2this is because t 7→ t 1/q (t ∈ [0,∞], q ∈ [1,∞) satisfies the hypotheses
of Lem. 3.8
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trol the asymptotics of
∫ |ϕn(x)|q dx (meaning

liminf
∫ |ϕn(x)|q dx ≤ Mq (g )).

‖ϕn‖q =
∫

X |ϕn(x)|q dx

‖ϕn‖q−1
q

(7)

For each n = 1,2, . . ., let us define

ψn(x) = |ϕn(x)|q−1

‖ϕn‖q−1
q

(sgn g ) ∈ L∞
0 , (8)

An easy calculation will show that ‖ψn‖p = 1. We
can bound ‖ϕn‖q using the scalar product 〈g ,ψn〉 (see
Equation (7)) because each ϕn is a subordinate of g .
This is accomplished by ’stealing’ a factor of |ϕn(x)| un-
der the integral sign.

‖ϕn‖q =
∫

X |ϕn(x)|q dx

‖ϕn‖q−1
q

≤
∫

X |ϕn(x)|q−1(sgn g )g (x)dx

‖ϕn‖q−1
q

≤ Mq (g )

2. If q =∞, it is fruitful to consider an equivalent charac-
terization of ‖g‖∞.

‖g‖∞ = sup
{

a ≥ 0,µ({x ∈ X , |g (x)| ≥ a}) > 0
}

. (9)

If ‖g‖∞ = 0, then there is nothing to prove. So in the
case that ‖g‖∞ > 0, we consider the lower approximants
to ‖g‖∞. Let 0 < ε < ‖g‖∞, the set Aε = {|g | > ε} must
have positive measure (possibly ∞). Our measure µ is
semifinite, so we find a measurable subset B of A with

0 <µ(B) <∞.

We note that B is a subset of Aε, so |g (x)| ≥ ε for a.e.
x ∈ B . To show that ε ≤ Mq (g ), we will evaluate g using
the averaging operator

fB =µ(B)−1χB (sgn g ).

It is easy to see that fB ∈ L∞
0 , and ‖ fB‖1 = 1. The scalar

product of fB with g gives the expression

〈g , fB 〉 = 1

µ(B)

∫
B
|g (x)|dx .

Our previous note tells us that ε≤ 〈g , fB 〉 ≤ Mq (g ) for all
ε< ‖g‖∞. Sending ε towards ‖g‖∞ proves Statement ii).

■

Few remarks on the proof of Proposition 1.3. Suppose that
we have a quantity b ∈ R that is defined by some kind of
limiting process (i.e. b = limbn , b = supB−, b = infB+, and
so on). The task of estimating the size of b can always be
reduced to the task of bounding or tagging along the terms
that lead up to b. More precisely, suppose {an}, {bn}, and
{cn} are R-valued sequences, where bn → b ∈ R. If an ≤

bn ≤ cn eventually, then

limsup an ≤ b ≤ liminfcn . (10)

[Rud76, Thm 3.19] contains a proof of Equation (10). By
giving ourselves some wiggle room, we can pick any se-
quence {bn} as long as it defines the same limit b. We can
also think of the extended reals R as an equivalence class
of monotone, R-valued sequences. In this case defining
sequence can be taken to be monotone. By passing to a
subsequence, we can also take {bn} to be Cauchy with a
specified rate of decay and integrable whenever b ∈R.

Specializing, elementary integral estimates for
∫

g (x)dx,
where g ∈ L+ can be obtained if we control the integrals
over the subordinates of g . The m.c.t. tells us that we
can choose any sequence of subordinates {ϕn} ⊆ L+, as
long as ϕn ↗ g pointwise a.e. The construction of a suffi-
ciently well-behaved sequence {ϕn} depends heavily upon
the problem you are working on: µ-invariant group ac-
tions, properties of g (boundedness, growth), properties
of the domain X (topology, σ-finiteness), etc; just to list a
few things that one can leverage if available. In the case
of q ∈ [1,∞) in the proof of Statement i), our choices of bn

and cn are bn = ‖ϕn‖q ↗ ‖g‖q , and cn = 〈g ,ψn〉 ≥ bn , re-
spectively.

1.2. Convergence in Measure

A sequence { fn} ⊆E(M) is said to converge in measure (ab-
brev. conv. in meas.) to f ∈ E(M) if for every ε and δ > 0,
there exists N ∈N+ such that

µ({x ∈ X , | fn(x)− f (x)| > ε}) ≤ δ whenever n ≥ N .3

If fn → f in meas., we think of f as the best possible rep-
resentative (modulo a.e. sets) of { fn}. Specifically, but still
on an informal level, the relation between different types
of convergences is as follows.

conv. in norm (1 ≤ p ≤∞)

implies conv. in meas.,

which implies subseq. conv. pw a.e.

Proposition 1.4

Let fn , f , g : X →C be measurable functions.
1. For p ∈ [1,∞], if ‖ fn − f ‖p → 0, then fn → f in

meas.a

2. If fn → f in meas., then fnk → f a.e. for some sub-
seq.

3. If fn → f in meas., and fn j → g a.e. for some sub-
seq., then f = g a.e.

3I don’t like this definition as well. But keep reading for important in-
sights.
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a fn , f are not necessarily in Lp .

(Terse) Proof. 1. The case for p =∞ follows from the def-
inition. If p ∈ [1,∞), use Chebyshev inequality, for any
ε> 0,

µ({| fn − f | > ε}) ≤ ‖ fn − f ‖p
pε

−p → 0.

2. Let e j ∈ c0 ∩ l++ be any specified rate of decay. Let
n j be an increasing sequence of numbers such that
supm≥n j

µ
(
{| fm − f | > e j }

) ≤ 2− j for every j ≥ 1. Set
A j = {| fn j − f | > e j }, then

∑∞
1 µ(A j ) <∞must mean that

µ(limsup A j ) = 0. (This comes from Borel-Cantelli, see
[Fol13, Thm 10.10a]). We know that x ∈ A = limsup A j

iff | fn j (x)− f (x)| 6= O(e j )4. So that the complement of
A is precisely the points x such that the pointwise rate
of convergence | fn j (x)− f (x)| = O(e j ). So that fn j → f
pointwise on Ac .

3. If fnk → g for some subsequence, we can pick a fur-
ther subsequence fn j of fnk , that converges pointwise
to f . This is because taking subsequences also pre-
serves convergence in measure. Let E1,E2 ∈M such that
µ(E c

1) = µ(E c
2) = 0, and fnk → g pointwise on E1, and

fn j → f pointwise on E2. If x ∈ E1 ∩E2 (which has null
complement) then

f (x) = lim fn j (x) = lim fnk (x) = g (x).

■

2. Riesz-Thorin Interpolation

To prepare ourselves for the proof of Riesz-Thorin interpo-
lation theorem, we will recall a few needed results and go
through a several warm-up exercises.

Suppose q,r ∈ [1,∞], q 6=∞. For any f ∈ Lq , there is a nat-
ural way of resizing the magnitude of f so that it is in Lr .

Definition 2.1
Let q,r ∈ [1,∞], q 6=∞, f ∈ Lq . If f = | f |(sgn f )a is the
polar decomposition of f , we define

f̃r =
{
| f |q/r (sgn f ) r 6=∞
sgn f r =∞.

(11)

afor any complex z, sgn z = z/|z| whenever z 6= 0, and sgn0 = 0.

We offer a quick proof for the fact that f̃r is in Lr , whose
norm is determined by

‖ f̃r ‖r =
{
‖ f ‖q/r

q r 6=∞
1 or 0 r =∞5.

(12)

4we say that X j =O(e j ) iff limsup |X j |/e j <∞

• If r 6= ∞, then ‖·‖r is computed directly using the in-
tegral

‖ f̃r ‖r
r =

∫
X | f (x)|(q/r )r dx =∫

X | f (x)|q = ‖ f ‖q
q .

• If instead r =∞, then ‖sgn f ‖∞ = 0 iff f = 0 pointwise
a.e, which proves Eq. (12).

Proposition 2.2 [Fol13, Thm 6.10]

Fix t ∈ [0,1] and suppose pt ∈ [p0, p1] is given by

p−1
t = (1− t )p−1

0 + (t )p−1
1 , (13)

1. For any f ∈ Lp0 ∩Lp1 , its Lpt norm can be estimated
interpolation inequality

‖ f ‖pt ≤ ‖ f ‖(1−t )
p0

‖ f ‖(t )
p1

. (14)

For the proof of the interpolation theorem however, a spe-
cialized version of Lem. 1.1 is needed.

Lemma 2.3
Let 1 ≤ p0 < pt < p1 ≤∞, and f ∈ Lpt . There exists a
decomposition f = f0 + f1 ∈ Lp0 +Lp1 , and a sequence
{ϕn} ⊆ Σ0, such that ϕn =ϕn0 +ϕn1 ∈ Σ0 +Σ0. This se-
quence satisfies
1. ϕn → f pointwise a.e., ϕn j → f j pointwise a.e ( j =

0,1),
2. |ϕn | ↗ | f | pointwise a.e., |ϕn j | ↗ | f j | pointwise a.e.

( j = 0,1),
3. ‖ϕn − f ‖pt → 0, and ‖ϕn j − f j ‖p j → 0 ( j = 0,1).

Proof. [Fol13, Thm 6.9, 2.10a, b] ■
For the next proposition, we will assume that (X ,M,µ) and
(Y ,N,ν) be positive, σ-finite measure spaces. The state-
ment remains valid if we assume µ,ν are semi-finite mea-
sures [Fol13, Thm 6.27].

Proposition 2.4 Riesz-Thorin Interpolation, [Fol13,
Thm 6.27]

Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and constants M j ≥ 0 ( j =
0,1). Suppose we are given a linear mapping T

T :
(
Lp0 (µ)+Lp1 (µ)

)→ (
Lq0 (ν)+Lq1 (ν)

)
which is (p j , q j ) stable and bounded ( j = 0,1). That is,
T (Lp j (µ)) ⊆ Lq j (ν), and

‖T f ‖q j ≤ M j ‖ f ‖p j for every f ∈ Lp j (µ).

For any t ∈ (0,1), let pt , qt be exponents defined by the
linear equations

p−1
t = (1− t )p−1

0 + (t )p−1
1

q−1
t = (1− t )q−1

0 + (t )q−1
1 .

Then, T is (pt , qt ) stable and bounded, and ‖T f ‖qt ≤
Mt‖ f ‖pt for every f ∈ Lpt (µ) where Mt = M (1−t )

0 M (t )
1 .

Proof. Let us consider this problem in the abstract for a lit-
tle while. By convention, if p =∞, then we write p−1 = 0. It
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will prove to be useful to define the exponents r0,r1 and rt

to be conjugate to q0, q1 and qt . A straightforward calcula-
tion will show that

r−1
t = (1− t )r−1

0 + (t )r−1
1 . (15)

If the exponents p j , q j are in [1,∞], their reciprocals must
fall inside the interval [0,1]. The linear equation that de-
fines p−1

t shows that p−1
t is in the strict interior of a line

segment with endpoints p−1
0 and p−1

1 .

Note 2.5
The extreme points of [0,1] are {0,1} (see appendix for
a review of what an extreme point is). From which we
deduce

p−1
t ∈ {0,1} ⇐⇒ p−1

0 = p−1
t = p−1

1

r−1
t ∈ {0,1} ⇐⇒ q−1

0 = q−1
t = q−1

1 ∈ {0,1}.

There is no typo in the second equivalence, reader
should verify with Eq. (15).

The main argument of the proof consists of using Def. 2.1
in conjunction with the three lines lemma (Lem. 3.3) to ob-
tain a uniform estimate for ‖T f ‖qt where f ranges over a
dense subset of Lpt with bounded norm. The set Σ0 is a
natural candidate for this. That is to say, we will prove

‖T f ‖qt ≤ Mt‖ f ‖pt for all f ∈Σ0, ‖ f ‖pt = 1. (16)

With this, we can define a continuous linear operator S :
Lpt → Lqt that extends T |Σ0 by uniform continuity. More
explicitly, and at the risk of sounding pedantic, given any
f ∈ Lpt , let {ϕn} ⊆ Σ0 converge to f in Lpt , and S( f ) be the
element such that

‖S( f )−T (ϕn)‖qt → 0. (17)

This uniquely characterizes S( f ), because bounded linear
operators such as T |Σ0 map Cauchy sequences to Cauchy
sequences. A similar argument also shows that

‖S( f )‖qt ≤ Mt‖ f ‖pt for every f ∈ Lpt . (18)

Postponing the proof for the estimate in Eq. (16) for the
moment, let us verify that S = T in the case where

1 ≤ p0 < pt < p1 ≤∞. (19)

For any f ∈ Lpt , we would like to make a special choice of
ϕn that will be useful in some of the computations later
on. The key idea is that we can improve the convergence
properties of ϕn → f if 1) we take our lower approximants
from a smaller class of functions, and 2) we pass to a suit-
able subsequence.

Lemma 2.3, which we will restate for the convenience of
the reader, gives us an approximation of f in Lpt that also
’splits’ in Lpt ⊆ Lp0 +Lp1 .

There exists a decomposition f = f0 + f1 ∈ Lp0 +
Lp1 , and a sequence {ϕn} ⊆ Σ0, such that ϕn =

ϕn0 +ϕn1 ∈Σ0 +Σ0. This sequence satisfies

1. ϕn → f pointwise a.e., ϕn j → f j pointwise a.e
( j = 0,1),

2. |ϕn | ↗ | f | pointwise a.e., |ϕn j | ↗ | f j | point-
wise a.e. ( j = 0,1),

3. ‖ϕn − f ‖pt → 0, and ‖ϕn j − f j ‖p j → 0 ( j = 0,1).

By passing to a subsequence of ϕn< we can use the proper-
ties of T to our advantage. For j = 0,1,

‖T (ϕn j )−T ( f j )‖q j ≤ M j ‖ϕn j − f j ‖p j .

Convergence in norm (1 ≤ q j ≤∞) means that we can rela-
bel our sequence ϕn j and assume that T (ϕn j ) → T ( f j ) pw
a.e. (This comes from Prop. 1.4 for those that are unaware).
Adding the two pieces together T (ϕn0) + T (ϕn1) gives us
T (ϕn) → T ( f ) pointwise a.e. (Because f is in the domain
of T )

Since 1 ≤ qt ≤∞, and ‖S( f )−T (ϕn)‖qt → 0, the sequence
{T (ϕn)} of N-measurable functions converges in measure
to S( f ). One thinks of S( f ) as the best possible representa-
tive of the sequence of measurable functions {T (ϕn)}. By
a.e. uniqueness of this representative (proven in Prop. 1.4),
we get S( f ) = T ( f ) pointwise a.e.6 This proves that S is an
extension of T under the assumption in Eq. (19).

We now tackle the estimate Eq. (16) (with the assumption
1 ≤ p0 < pt < p1 ≤ ∞ still in place). Given f ∈ Σ0, with
‖ f ‖pt = 1, the norm ‖T f ‖qt can be estimated by looking
at the relative largeness of the scalar product (proven in
Prop. 1.37)

〈T f , ·〉 : L∞
0 →C.

Write f = (sgn f )
∑ |c j |χE j . For any z ∈ [1,∞], the rescaled

version of f as in Def. 2.1, is given by

f̃z =
{

(sgn f )
∑ |c j |pt /zχE j r 6=∞

sgn f r =∞.

We further subdivide the condition Eq. (19) into two cases.
The reasoning for this is because of the hypothesis of the
rescaling trick.
1. If q0 = q1, to compute ‖T f ‖qt , we fix an arbitrary g ∈

L∞
0 (ν), with ‖g‖rt = 1. The linearity of T and the eval-

uation map 〈g , ·〉 allows us to separate the effects of the
rescaling from the action of g on T (χE j ). For any z 6=∞,

〈g ,T ( f̃z )〉 =∫
Y g (y)T ( f̃z )(y)dy

=∑ |c j |pt /z e i argc j 〈g ,T (χE j )〉 (20)

If z =∞, a formula similar to Eq. (20) can be obtained.

6the reason why we cannot use positive definiteness of some of the
norms involved q0, q1, and qt is because the three sequences T (ϕn ),
T (ϕn0), and T (ϕn1) have limits that lie in three different Lq spaces.

7remember that ν is σ-finite (can be relaxed to semifinite)
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2. If q0 6= q1, then q−1
t ∉ {0,1}. Which rules out the possi-

bility that rt = ∞. For any g ∈ Σ0, ‖g‖qt = 1, suppose
that g =∑ |dk |e i argdkχFk . We can use the rescaling trick
on both sides. Writing g̃z = |g |rt /z (sgn g ), we see that for
any z 6=∞,

〈g̃z ,T ( f̃z )〉 =∫
Y g̃z (y)T ( f̃z )(y)dy

=∑ |dk |rt /z |c j |pt /z e i (argc j +argdk )〈χFk ,T (χE j )〉. (21)

The sum in Eq. (21) is over finitely many j ,k. A similar
equation is obtained if z =∞.

With g ∈ L∞
0 , or g ∈ Σ0 held fixed, we will show that the

scalar product is bounded by Mt . Explicitly this means{
|〈g ,T ( f̃pt )| ≤ Mt q0 = q1

|〈g̃rt ,T ( f̃pt )| ≤ Mt q0 6= q1.
(22)

The important part of Eqs. (20) and (21) is in the exponents,
i.e. |c j |pt /z (resp. |c j |pt /z |dk |rt /z ). It is also useful to re-

member that f̃pt = f , and g̃rt = g whenever rt 6= ∞, as the
exponent cancels out nicely. For any ω ∈ C, we define the
function φ : C→C,

φ(ω) =
{〈g ,T ( f̃(1−ω)p−1

0 +(ω)p−1
1

)〉 q0 = q1

〈g̃(1−ω)r−1
0 +(ω)r−1

1
,T ( f̃(1−ω)p−1

0 +(ω)p−1
1

)〉 q0 6= q1

(23)
In both cases, φ : C→C is a holomorphic function because
of ω is placed in the exponent. Furthermore, if Reω ∈ {0,1},
the relative sizes of the functions

g̃(1−ω)r−1
0 +(ω)r−1

1
and f̃(1−ω)p−1

0 +(ω)p−1
1

remain unchanged as we perturb ω by a purely imaginary
number. That is to say, suppose that Reω= j ∈ {0,1}, then

‖ f̃(1−ω)p−1
0 +(ω)p−1

1
‖p j = ‖ f̃p j ‖p j = 1, and (24)

‖g̃(1−ω)r−1
j +(ω)r−1

j
‖r j = ‖g̃r j ‖r j = 1 (25)

By considering the cases where Reω = j and Imω = 0, we
obtain {

|〈g ,T ( f̃p j )〉| ≤ M j q0 = q1

|〈g̃r j ,T ( f̃p j )〉| ≤ M j q0 6= q1.

If Reω = j ∈ {0,1}, and Imω 6= 0. We can use the ’norm-
invariance’ (Eq. (24)) and see that |φ(ω)| ≤ M j .

Here is where the complex analysis comes in. By the three
lines lemma, Lem. 3.3, this gives us an estimate for φ(t )

|φ(t )| ≤ M (1−t )
0 M (t )

1 = Mt ,

where t has the same meaning as before, i.e. t ∈ (0,1). In
both subcases of 1 ≤ p0 < pt < p1 ≤∞, we conclude either
directly or by a density argument of Σ0(ν) ⊆ L∞

0 (ν), that the
number

‖T f ‖qt = sup{|〈g ,T f 〉|, g ∈ L∞
0 (ν), ‖g‖rt = 1}

is bounded above by Mt . Since the simple function f is

chosen arbitrarily, this completes the proof for the esti-
mate under the assumption 1 ≤ p0 < pt < p1 ≤∞.

Let us tackle the remaining cases. If p0 6= p1, we can al-
ways relabel the exponents such that 1 ≤ p0 < pt < p1 ≤
∞. It remains to prove the estimate when p0 = pt = p1

(and q0, q1, qt unconstrained). This is straightforward be-
cause we can apply the interpolation inequality (proven in
Prop. 2.2). For any f ∈ Lpt , the function T f is in Lq0 ∩Lq1 ,
which means

‖T f ‖qt ≤ ‖T f ‖(1−t )
q0

‖T f ‖(t )
q1

≤ Mt‖ f ‖pt . (26)

The extension argument (and the proof of S = T ) is unnec-
essary because Eq. (26) holds for every f ∈ Lpt . Therefore
T restricts to a (pt , qt ) stable and bounded linear operator
with ‖T ‖ ≤ Mt , and the proof of the interpolation theorem
is complete. ■

2.1. Application to the Fourier Transform

Corollary 2.6 Hausdorff-Young, [Fol13, Thm 8.21,
8.30]

Let 1 ≤ p ≤ 2 and 2 ≤ q ≤∞ be conjugate exponents.
The Fourier transform on Rn , F : (L1+L2)(Rn) → (L∞+
L2)(Rn) is a norm-decreasing (p, q) stable linear op-
erator. A similar result holds for F : (L1 + L2)(Tn) →
(l∞+ l 2)(Zn) as well.

Proof. This follows almost immediately from the Riesz-
Thorin interpolation theorem other than one small thing.
If p j , q j are exponents in [1,∞], and p j , q j are Holder con-
jugates ( j = 0,1), then pt , qt is a conjugate pair for any
pt , qt defined as in Prop. 2.4. ■

2.2. Application to Conditional Expectations

Definition 2.7
Let (X ,M,µ) be a probability space, and N ⊆M a sub
σ-algebra. The conditional expectation is a linear map

E(· |N) : L1(M,µ) → L1(N,µ), a

defined by its action on N measurable sets. That is, for
every A ∈N and f ∈ L1(µ),∫

A f (x)dµ (x) =∫
A E( f |N)(x ′)dµ (x ′).b (27)

aby (N,µ) we mean (N,µ|N) i.e., the restriction of the measure
bfor contrast, we use x′ on (X ,N,µ|N), and x on (X ,M,µ).

Proposition 2.8 [Fol13] Ex 3.17

Let (X ,M,µ) be a finite measure space (µ ≥ 0) and
N a sub σ-algebra of M. Given a real-valued f ∈
L1(X ,M,µ), there exists g ∈ L1(X ,N,ν), where ν= µ|N

Updated 2024-11-30 at 19:54 Page 6



Riesz-Thorin Interpolation & Applications 3. Notes and Generalizations

such that ∫
A f dµ=∫

A g dν, ∀A ∈N.

The function g is uniquely determined ν a.e. More-
over, if f ≥ 0 (µ a.e.), then g ≥ 0 (ν a.e.)

Proof. The uniqueness of g follows from the ability of in-
tegration over measurable sets to separate points in L1.
[Fol13, Thm 2.23] Let η1 be a signed measure on M, de-
fined by dη1 = f dµ. Let η2 = η1|N. We can apply Radon-
Nikodym theorem and decompose η2 with respect to ν. We
obtain g ∈ L1(X ,N,ν), finite signed measures (on N) ρ,λ,
such that λ⊥ ν, ρ¿ ν, dρ = g dν, and η2 =λ+ρ. The proof
is complete upon showingλ= 0, and this occurs if and only
if η2 ¿ ν. Because f is µ-integrable, η1 ¿ µ, so Ker(µ) ⊆
Ker(η1).8 Fix any A ∈ Ker(ν) = N∩Ker(µ) ⊆ Ker(η1), then
η2(A) =µ(A) = 0. The last claim is obvious. ■
Because µ is a finite measure, Σ0 is the vector space formed
by taking linear combinations of indicator functions. The
equation defining the cond. exp. on L1 extends naturally
to a scalar product on Σ0 as follows. Fix any f ∈ L1(M,µ)
and denote its conditional expectation by g , we can write

〈 f ,χA〉 =
∫

A f (x)dP (x) =∫
A g (x ′)dP (x ′) = 〈g ,χA〉 ∀A ∈N.

(28)
If ϕ = ∑k

1 c jχA j , where c j ∈ R and A j ∈ N, by linearity on
both sides of Equation (28),

〈 f ,ϕ〉 =∫
X f (x)ϕ(x)dP (x)

=∫
X g (x ′)ϕ(x ′)dP (x ′) = 〈g ,ϕ〉

for every ϕ ∈ Σ0. Since Σ0(N,µ) is dense in L∞(N,µ)
(the ess. bounded, N-measurable equivalence classes, not
pointwise functions), we arrive at Equation (29), which
some people prefer to take as the definition of the cond.
exp. (present author included)

〈 f ,b〉 = 〈g ,b〉 for every b ∈ L∞(N,µ). (29)

This highlights a certain functional analytic significance
that is not present in the original definition. Namely, the
cond. exp. is the operator adjoint of the inclusion map of
L∞(N,µ) → L∞(M,µ). Unfortunately, most introductory
texts do not characterize dual space of L∞ as the space
of finitely additive measures, or (L∞(M,µ))∗ = ba(M,µ).

Proposition 2.9

For p ∈ [1,∞], the conditional expectation as defined
in Equation (27) is Lp stable, meaning it sends f ∈

8I realized that we have not defined the kernel of a complex σ-additive
measure yet. But we can think of Kerµ = {E ∈M, |µ| = 0} where |µ| is the
t.v. measure of µ

Lp (M,µ) to E( f |N) ∈ Lp (N,µ). Moreover,

‖E( f |N)‖Lp (N,µ) ≤ ‖ f ‖Lp (M,µ) for every f ∈ Lp (M,µ).
(30)

Proof. We will use Riesz-Thorin’s interpolation to show the
Lp stability of the cond. exp. First we consider the extreme
cases at the endpoints of [1,∞].
1. If p = 1, f ∈ L1(M,µ), let g = E( f | N) be its conditional

expectation. We can compute the L1(N,µ) norm of g by
integrating against sgn g ∈ L∞(N,µ):

‖g‖L1(N,µ) = |〈 f , sgn g 〉|
≤ ‖ f ‖L1(M,µ)‖g‖L∞(M,µ) ≤ ‖ f ‖L1(M,µ)

More is true, if we take f = 1 (the constant function),
then ‖g‖L1(N,µ) = ‖ f ‖L1(M,µ). So that E(· |N) is continu-
ous, and its operator norm is equal to 1.

2. If p =∞, fix f ∈ L∞(M,µ), let c = ‖ f ‖L∞(M,µ). The funci-
ton h = c ± f is non-negative pointwise a.e; and be-
cause L∞ embeds continuously in L1 for finite measure
spaces, we can take its cond. exp. Using linearity of the
cond. exp.,

E(h ± f |N) = c ±E( f |N) ≥ 0.

Using the fact that if g1, g2 ∈ L+(N,µ), g1 ≤ g2 iff g1dµ≤
g2dµ as positive measures, we see that

−c ≤ E( f |N) ≤ c pointwise a.e..

This proves ‖E( f |N)‖L∞(N,µ) ≤ ‖ f ‖L∞(M,µ).
Thus, the assumptions of the Riesz-Thorin interpolation
theorem are satisfied, because µ and its restriction µ|N are
probability measures. This gives us Lp stability for p ∈
[1,∞]. Moreover, the operator norm of E(· |N) : Lp (M,µ) →
Lp (N,µ) is at most 1 — a result also from the interpolation
theorem. ■

3. Notes and Generalizations

3.1. Characterization of Intervals

Equation (9) deserves some our attention. We restate it for
the convenience of the reader.

‖g‖∞ = inf
{

a ≥ 0, µ({x ∈ X , |g (x)| > a}) = 0
}

= sup
{

a ≥ 0, µ({x ∈ X , |g (x)| > a}) > 0
}

.

Suppose we are given a non-empty set A ⊆ [0,∞] such that

for any x ∈ A, [x, ∞] ⊆ A, then either A = [c,∞]
or A = (c,∞] where c ≥ 0; and either Ac = [0,c) or
Ac = [0,c].

The number c is also the infimum of A, from which we can
deduce that inf A = sup Ac . We think of the set A (resp. Ac )
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as being defined by a single point in R. An alternate way of
thinking about this is to equip [0, ∞] with the order topol-
ogy [Fol13, Ex 4.9], and use ∂A = ∂Ac = {c}.

3.2. Extreme Points

Definition 3.1
The extreme points of a convex subset C in a vector
space X are the set of points p ∈C such that

∀x, y ∈C , ct (x, y) 6= p ∀t ∈ (0,1).

Proposition 3.2 Krein-Milman, [Yos12, Chap XII]

Let X be a l.c.s. and C a precompact convex set in X .
Then, C is equal to the closed convex hull of its ex-
treme points.

Let f : C → R be a convex function defined on a bounded
convex domain in Rn , and S = {x1, . . . , xk } be the set of ex-
treme points of C . (One can show that in finite dimensions,
S is finite). If x ∈C , it can be written as the cv. combination
x =∑k

1 ti xi , and by convexity of f :

f (x) = f
(∑k

1 ti xi

)
≤∑k

1 ti f (xi )

≤
(∑k

1 ti

)
sup f (S) = f (S).

In other words, having a control over the extreme points of
C gives us a bound on all of C . A complex analytic analogue
of this is the following.

Lemma 3.3 Three Lines, [Fol13, Thm 6.26]

Let φ be a bounded continuous function on Re(z) ∈
[0,1] that is holomorphic in Re(z) ∈ (0,1). If |φ(z)| ≤ M0

for Re(z) = 0 and |φ(z)| ≤ M1 for Re(z) = 1, then

|φ(z)| ≤ M 1−t
0 M t

1

for any t ∈ (0,1), where t = Re(z).

3.3. Interpolation Spaces

Proposition 3.4 [Fol13, Ex 6.3, 6.4]

The norms in Eqs. (31) and (32) make i) (Lp0∩Lp1 ,‖·‖a)
and ii) (Lp0 + Lp1 ,‖·‖b) Banach spaces, such that iii)
Lp0 ∩Lp1 ,→ Lpt ,→ Lp0 +Lp1 .a

‖ f ‖a = ‖ f ‖p0 +‖ f ‖p1 (31)

‖ f ‖b = inf{‖g0‖p0 +‖g1‖p1 , f = g0 + g1 a.e.} (32)

(in the right hand side of Eq. (32), we can take g j ∈ Lp j )

a,→ = cont. linear embedding

Proof. A bit tedious, maybe I will skip it or put it in the ap-
pendix. ■

3.4. Vector Lattices and the Monotone Conver-
gence Theorem

Definition 3.5
Let V be a v.s. over R, a subset V + ⊆V is a positive cone
if
1. ϕ1,ϕ2 ∈V +, so is ϕ1 +ϕ2, and
2. if ϕ ∈V +, then αϕ ∈V + for all α≥ 0.

The positive cone V + defines a partial order on V , for any
x, y ∈ V , we write x ≤ y if y − x ∈ V +. We say that V is a
vector lattice [Yos12] if for every pair x, y ∈ V , there exists
elements z, w ∈V such that

z ≤ x ≤ w and z ≤ y ≤ w,

and if z ′, w ′ are elements that satisfy the same relation,
then

z ′ ≤ z and w ≤ w ′.

lattice we write z = x ∨ y , and w = x ∧ y . It is easy to see
that the elements z, w are unique. They are called the
least upper bound and greatest lower bound of x and y .

We use the suggestive notation ϕn ↗ ϕ to mean that i)
{ϕn} ⊆ {ψ ∈ V , ψ≤ ϕ}; ii) the sequence {ϕn}n≥1 directed by
increasing n is monotone: ϕn ≤ϕn+1 at every n; iii) if ψ ∈V
is an element such that ϕn ≤ψ for all n, then ϕ ≤ψ. This
of course leads to a characterization of ’upwards’ conver-
gence using the theory of nets (see [Fol13, Ex 4.9]) which is
beyond the scope of our current document.

Definition 3.6
Let Σ+ ⊆ V + be a vector sub-lattice. A functional I :
Σ+ → [0,∞]
1. is monotonic if for every ϕ1,ϕ2 ∈ Σ+, ϕ1 ≤ ϕ2 im-

plies I (ϕ1) ≤ I (ϕ2),
2. is sequentially l.s.c. if for every ϕn ↗ ϕ in Σ+, then

I (ϕ) ≤ liminf I (ϕn), and
3. is said to satisfy the m.c. property if ϕn ↗ ϕ in Σ+

implies I (ϕn) ↗ I (ϕ) in [0,∞].

Proposition 3.7 Monotone Convergence Theorem

Let I : Σ+ → [0,∞] be a monotone functional. Then
I satisfies the m.c. property iff I is sequentially l.s.c.
Moreover, if we define

I+ : V + → [0,∞] where

I+(x) = sup{I (ϕ), ϕ ∈Σ+, ϕ≤ x}. (33)

then I+ is a monotone functional, and is sequentially
l.s.c. whenever I is (resp. satisfies m.c.).

Lemma 3.8
Let φ : [0,∞] → [0,∞] be a non-decreasing function,

Updated 2024-11-30 at 19:54 Page 8



Riesz-Thorin Interpolation & Applications 3. Notes and Generalizations

and suppose that for every x ∈ [0,∞],

φ(x) = lim
y<x, y→x

φ(y).

For any subset A ⊆ [0,∞], we have φ(sup A) =
supφ(A).

3.5. Lower semi-continuity

There is a topology on R that makes it a T0 but not a T1

space. Let E = {(a, ∞)}a∈R. Since E is closed under finite
intersections, [Fol13, Prop 4.3, 4.4] together tell us it gen-
erates a topology on R. Which we can write explicitly as
Tlsc = {∅, R}∪E.

Given two distinct points t0 < t1 ∈ R, take U = (t1 −ε, +∞)
for sufficiently small ε. This open set separates t1 from
t0, but any open set containing t0 must also contain t1.
Therefore (R, Tlsc) is T0 but not T1.

This topology is actually way more useful than at first
glance. It provides a weaker notion of continuity in scenar-
ios which are deemed to be too restrictive; where ordinary
continuity refers to continuity w.r.t. (R, Tball). If X is an-
other topological space, a function I : X →R is lower semi-
continuous (abbrev. l.s.c.) whenever it is continuous with
respect to (R, Tlsc). Moreover, if xn → x ∈ X , then

I (x) ≤ liminf I (xn).

Applications of (R, Tlsc) can be found in optimization, the
calculus of variations, partial differential equations.

3.6. Approximation Techniques

We construct an abstract approximation framework. Let
Ω be an arbitrary set and Σ ⊆ Ω be a subset on which we
define a functional J : Σ→ [0,+∞].

Definition 3.9
Suppose for every x ∈Ω, we are given a set Σx ⊆Σ. We
define the upper and lower approximations to J ,

I+(x) = sup
z∈Σx

J (x) and I−(x) = inf
z∈Σz

J (z). (34)

The functional J is said to be consistenta if
1. for every x ∈Ω, the set Σx is non-empty,
2. for every z ∈Σ, z ∈Σz , and
3. J (z) = I+(z) = I−(z) for all z ∈ Σ, this makes I± an

extension of J .

aMore generally, a subset Σ′ ⊆Σ is said to be consistent if J |Σ′ is a
consistent functional.

We always assume that J is consistent. The linear or-
dering on [0,∞] induces a relation on Ω through I = I±.

Definition 3.10
Given x, y ∈Ω, we say that x is less than y as measured
by I whenever I (x) ≤ I (y). This is written

x ≲I y or x ≤ y (meas. I )

We are ready to discuss three juicy and extremely impor-
tant proof techniques for estimating the sizes of I±(x).
Technique 1 To show x ≤ y (meas. I ), it is sufficient to

show Σx ⊆Σy if I = I+ (or Σy ⊆Σx whenever I = I−).

Let x ∈ Ω be arbitrary, we wish to bound I (x) by c
(we agree that c ≥ 0 means c ∈ [0,+∞] and ’bounding’
means from above unless specified otherwise).

I+(x) ≤ c or I−(x) ≤ c.

Technique 2 On one hand, if I = I+,

I+(x) ≤ c is implied by Σx ≤ c (meas. I ),

or Σx ⊆ {I ≤ c}. On the other hand,

I−(x) ≤ c is implied by ϕ≥ c (meas. I ), ∃ϕ ∈Σx ,

or equivalently: Σx ∩ {I ≥ c} 6= ∅. An exercise for the
reader: apply to [Fol13, Thm 1.10, 1.13].

Technique 3 The most important technique by far is to
control the terms leading up to the supremum/infi-
mum.

Since I+(x) is defined by a supremum, it induces a
sequence (ϕn) ⊆ Σx that increases to I+(x) (meas. I ).
To obtain a bound for I+(x), it therefore suffices to esti-
mate (J (ϕn))n using another sequence (cn). We end up
with the following condition.

Let I = I+ and x ∈ Ω, let (ϕn) ⊆ Σx increase to I (x)
(meas. I ), suppose further that there exists a sequence
(ψn) ⊆Ω, where

ϕn ≤ψn (meas. I ) ∀n ≥ N

and that liminfn→∞ I (ψn) ≤ c. Then,

I (x) ≤ liminf
n→∞ I (ψn) ≤ c

3.7. Abstract Approximators

Let Σ(1) and Σ(2) be consistent subsets of Σ, and write Σ(k)
x =

Σ(k) ∩Σx (k = 1,2). Let us define

I+(1)(x) = sup
ϕ∈Σ(1)

x

J (ϕ) and I+(2)(x) = sup
ϕ∈Σ(2)

x

J (ϕ) for every x ∈Ω,

and similarly for I−k (x) (k = 1,2).

Proposition 3.11 Abstract Fatou’s Lemma

Let x ∈Ω such that for every ϕ ∈ Σ(1)
x , there exists a se-
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quence {ψn} ⊆Σ(2)
x satisfying

J (ϕ) ≤ liminf J (ψn)a,

then I+(1)(x) ≤ I+(2)(x).b

aequivalently, for every ε> 0 there exists ψε ∈Σ(2)
x such that ψε ≤

ϕ+ε (meas. J )
band if limsup J (ψn ) ≤ J (ϕ) then I−(2)(x) ≤ I−(1)(x).

To conclude our discussion, we give two sufficient condi-
tions for I−(1) ≤ I+(2). The first of these two is known as an in-
tersection theorem in nonlinear PDE, the second is a weak-
ened version based on a cofinality argument.
Technique 1 Let Σ( j ) be generating sets on Ω and J( j ) :

Σ( j ) → R be functionals defined. Suppose that for every
x ∈Ω, the two generating functionals satisfy an ’overlap-
ping’ condition:

J(1)(Σ
(1)
x )∩ J(2)(Σ

(2)
x ) 6=∅,

then I−(1)(x) ≤ I+(2)(x) and I−(2)(x) ≤ I+(1)(x).
Technique 2 Suppose there exists ϕk ∈ Σ(k)(x) (k = 0,1)

such that J0(ϕ0) ≤ J1(ϕ1), then I−0 (x) ≤ I+(1)(x).

3.8. Scalar Products

Our treatment of the dual space of L∞
0 is heavily inspired by

distribution theory on Rn . If we assume that µ is σ-finite,
we can give L∞

0 a topology that is very similar to the C∞
topology of compact convergence of test functions. A net
〈 fα〉α∈A ⊆ L∞

0 converges to f ∈ L∞
0 if there exists E ∈ M,

µ(E) <∞, and α0 ∈ A such that

supp( fα) ⊆ E ∀α≥α0 and ‖ fα− f ‖∞ → 0.

If this is the case, we say that fα → f essentially uniformly
on µ-finite sets. This allows for the interchange of limits
when integrated against a complex measure ν, which is of
course assumed to be absolutely continuous with respect
to µ, as fα is an equivalence class of functions. This has
applications in the theory of martingales, for example. We
give a quick proof for the sequential continuity of the scalar
product with respect to this topology. Fix g ∈ L1

loc and a
sequence ϕn →ϕ ess. uniformly on µ-finite sets in L∞

0 . Let
E be a µ-finite subset such that

supp(ϕ)∪ (∪∞
1 supp(ϕn)) ⊆ E ,

then the integrands are uniformly dominated as

|g (x)ϕn(x)| ≤ |g (x)|sup
n

‖ϕn‖∞χE ∈ L1(µ).

It is also clear that g (x)ϕn(x) → g (x)ϕ(x) pointwise a.e. By
the dominated convergence theorem,

〈g ,ϕn〉 =
∫

X g (x)ϕn(x)dx −→∫
X g (x)ϕ(x)dx = 〈g ,ϕ〉.

As for how Σ0 is related to L∞
0 (within this new topology),

the proof of [Fol13, Thm 2.10] will show that Σ0 is dense
in L∞

0 w.r.t. the topology of ess. uniform convergence on

µ-finite sets. This essentially means that the scalar product
is completely characterized by its action on {χA , µ(A),∞}.

Last thing we have to say about the scalar product: we can
give L1

loc (µ) the strong operator topology (see [Fol13, Chap
5.4]) with respect to 〈g , ·〉, which is of course the same as
the subspace topology inherited from weak-∗ topology on
(L∞

0 )∗. The dual spaces for non-Banachable t.v.s. is a com-
plicated matter, and we will not pursue this line of inquiry
any further. We encourage the reader to check out some
of the fantastic texts that have been written [Yos12; DS88;
HS12].

We now compare the claims and the proofs of Proposi-
tion 1.3 with [Fol13, Thm 6.13, 6.14]. We have assumed
that µ is σ-finite from the beginning. But this assump-
tion can be removed by using Lemma 3.15. The assertions
made in Prop. 1.3, namely Statement i), and ii) loosely cor-
respond to Theorems 6.13, and 6.14 in [Fol13] respectively.

The premise in [Fol13] is that g is a complex-valued, mea-
surable function such that the scalar product 〈g ,ϕ〉 con-
verges absolutely for every ϕ ∈ Σ0, which is equivalent to
g ∈ L1

loc (µ) — as the argument below shows.

• Necessity: χA ∈Σ0 whenever µ(A) <∞.
• Sufficiency: take linear combinations of χE j , where
µ(E j ) <∞.

Given such a g , Folland also defines the quantity

M ′
q (g ) = sup

{
|〈g ,ϕ〉|, ϕ ∈Σ0, ‖ϕ‖p = 1

}
. (35)

It is easy to see that M ′
q (g ) = Mq (g ), but for completeness

we will sketch the proof. The estimate M ′
q (g ) ≤ Mq (g ) is

obvious. If the sequence { fn} ⊆ L∞
0 defines the supremum

Mq (g ), within any ε tolerance we obtain

Mq (g )−ε≤ |〈g , fn〉|
By the density of Σ0 ⊆ L∞

0 : there exists {ϕm} ⊆ Σ0 such that
ϕm → fn in ess. uniformly on µ-finite sets. Hence

Mq (g )−ε≤ |〈g ,ϕm〉|. (36)

As in the proof of [Fol13, Thm 2.10], we can take each ϕm

to be a subordinate of fn , so ‖ϕm‖p ≤ 1. Using which we
can bound the right hand side of Equation (36) by Mq (g )
and conclude Mq (g ) = M ′

q (g )

3.9. Finitely additive measures

We turn our attention to L∞(M) or L∞(M,µ). It is well
known that L∞(M) and L∞(M,µ) are Banach spaces. The
dual space of L∞(M) is the space of finitely additive mea-
sures, and is denoted by ba(M). For more on this, see
[Tol20, Chap 4-6] for an accessible introduction to this sub-
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ject, [Yos12] has a short section on this, and the classic
[DS88, Chap 3].

3.10. Separation of Points

Let Ω0,Ω1 be sets. A collection of mappings F ⊆Ω
Ω0
1 sepa-

rates Ω0 if

f (x0) = f (x1) for every f ∈F iff x0 = x1

If we fix x ∈Ω0 and look at the correspondence f 7→ f (x) as
f ranges in F, we obtain a mapping φ(x) :F 7→Ω1.

If F separates the points of Ω0, then φ is an injec-
tion and we consider Ω0 as a subset of ΩF

1 .

We give a few examples.
1. [Fol13, Thm 2.23] Let (X ,M,µ) be a measure space. For

any E ∈ M, we can associate it with χE ∈ L∞(µ). (This
mapping is usually not injective.) For any E ∈ M, we
write

〈E , f 〉1 =
∫

E
f (x)dµ.

Which means

〈E , f 〉1 = 〈E , g 〉1 ∀E ∈M iff f = g a.e.

2. [Fol13, Thm 5.8b] Let X be a Banach space. The scalar
product

〈 f , x〉 = f (x) for every f ∈ X ∗, x ∈ X

separates both X and X ∗. To see that 〈 f , ·〉 separates X ∗:
pick f , g ∈ X ∗, then f = g iff ‖ f − g‖ = 0. If ‖ f − g‖ > 0,
there must exist x ∈ X where f (x) 6= g (x).

3. [Fol13, Thm 6.15] If p, q ∈ (1,∞) are Holder conjugates.

〈 f ,ϕ〉q =
∫

X
f (x)ϕ(x)dx for all f ∈ Lp and ϕ ∈ Lq .

The integrals above converge absolutely, and the scalar
product separates Lp and Lq .

〈 f , ·〉q = 〈g , ·〉q iff f = g a.e.

〈·,ϕ〉q = 〈·,ψ〉q iff ϕ=ψ a.e.

The same thing holds for p = 1 whenever µ is semifinite.
4. [Fol13, Thm 7.17] Let X be a LCH space, M(X ) the space

of complex Radon measures, C0(X ) be the complex-
valued continuous vanishing functions from X . The
scalar product

〈µ, f 〉 =
∫

X
f (x)dx for all µ ∈ M(X ), and f ∈C0(X )

separates M(X ) and C0(X ), in other words

〈µ, ·〉 = 〈ν, ·〉 iff µ= ν

〈·, f 〉 = 〈·, g 〉 iff f = g .

3.11. Norming Sets

Definition 3.12
Let X be a normed vector space, a family of functions
F= { fα : X → [0,∞)} is said to be norming for X if

‖x‖ = sup fα(x) for every x ∈ X .a

aresp. subnorming, supernorming. if ≥ or ≤

We can rephrase Proposition 1.3 in terms of the following.

For any semifinite measure space, Sp norms Lq

in L1
loc , where

Sp = { f ∈ L∞
0 , ‖ f ‖p = 1}.

[Fol13, 5.8b] For any x ∈ X , if we wish to compute ‖x‖, it
suffices to look at the unit sphere of X ∗.

‖x‖ = max{ f (x), ‖ f ‖ = 1}.

3.12. Semifinite Measures

Definition 3.13 [Fol13, pp.25]

A measure µ on M is semifinite if every µ-infinite set E
admits a measurable subset F such that 0 <µ(F ) <∞.a

aThe authors personally think that this definition is not that great,
see Equation (37) for a more intuitive characterization.

A semifinite measure onM can be thought of as something
that is completely characterized by its restriction onto its
µ-finite subset. This is similar to the Lebesgue measure on
R or any Radon measure on a locally compact space [Fol13,
Chap 3.4, 7.1, 7.2]. Once we know the values µ takes on its
µ-finite subsets, we can approximate every member in the
σ-algebra.

Lemma 3.14 [Fol13, Ex 1.13, 1.14, 1.15]

Ex 1.13 Every σ-finite measure is semifinite.
Ex 1.14 If µ is a semifinite measure, then for every E ∈

M,

µ(E) = sup
{
µ(F ) <∞, F ⊆ E , F ∈M

}
. (37)

Ex 1.15 If µ is a measure on (X ,M), define µ0(E) to be
the right hand side of Equation (37) for every mea-
surable E . Then i) µ0 is semifinite, ii) µ0 = µ iff µ is
semifinite iii) there is another measure ν such that
ν(E) ∈ {0,∞} such that µ+µ0 +ν.

Proof. Ex 1.13 Let An ↗ X be an increasing σ-finite
exhaustion of X , for any E ∈ M, if µ(E) = ∞, then
µ(An ∩E) ↗∞ by continuity from below.

Ex 1.14 Fix E ∈ M, if µ(E) < ∞, then the supremum is
attained in Equation (37) and there is nothing to prove.
Suppose µ(E) =∞, let us denote the supremum by c. It is
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clear that c > 0 (by semifiniteness).

The rest of the proof requires some additional effort and
is rather technical. Suppose that c < ∞, intuitively this
means there is a non-trivial ’gap’ between the µ-finite sub-
sets and the µ-infinite subsets of E . We claim that the
supremum is attained: there exists F ⊆ E , F ∈M, such that
µ(F ) = c. Postponing the proof for the claim, we will show
that this gives us a contradiction.

An easy calculation will show that µ(E \ F ) = ∞, and by
semifiniteness again: we can find A′ ⊆ E \ F (which is dis-
joint from F ), with 0 < µ(A) <∞. Using additivity, we can
improve upon the supremum by at least µ(A):

µ(F ∪ A) =µ(F )+µ(A) > c.

which contradicts that c is the supremum.

Onto the proof of the claim. Let E1 = E , A1 ⊆ E1, with
µ(A1) ∈ [c2−1,c] and then set E2 = E1 \ A1. Suppose we have
A1, . . . , An−1 chosen, such that

A j ⊆ E j = E j−1 \ A j−1 ∀ j = 2, . . . ,n −1,

µ(A j ) ∈ [c2− j , c2−( j−1)] ∀ j = 1, . . . ,n −1.

This technique is very similar to the decomposition of the
unit interval into almost-disjoint intervals

[0,1] =⋃∞
1 [2− j , 2−( j−1)].

Set En = En−1 \ An−1, which has ∞ measure. By additivity,
one can argue that

sup
{
µ(A) <∞, A ⊆ En , A ∈M

}
≤∑∞

n c2− j = c21−n .

There exists a measurable subset An of En , with µ(An) ∈
[c2−n ,c2−(n−1)]. The principle of induction gives us a dis-
joint sequence {An}∞1 , whose union attains the supremum:

µ(∪∞
1 An) =∑∞

1 µ(An) ≥∑∞
1 c2−n = c.

This completes the proof.

Ex 1.15 Left as an exercise. ■

For strictly semifinite measure spaces, the proof of Propo-
sition 1.3 requires the following lemma, to make sure that
the support of g is σ-finite.

Lemma 3.15 [Fol13, Ex 6.17]

If g ∈ L1
loc , q ∈ [1,∞) and suppose that Mq (g ) =

sup{|〈g , f 〉|, f ∈ L∞
0 , ‖ f ‖p = 1} <∞. Then,

1. for any ε> 0, µ
(
{x ∈ X , |g (x)| > ε}

)<∞, and
2. supp(g ) = {x ∈ X , |g (x)| 6= 0} is σ-finite.

Proof of Lemma 3.15. If µ(supp(g )) < ∞, both of the
claims are immediate, so we are free to assume

µ(supp(g )) =∞. For any ε> 0, let us write

Aε = {|g | > ε}.

The semifiniteness of µ (see Lemma 3.14) means that we
can approximate µ(Aε) by its subsets of finite measure.

µ(Aε) = sup{µ(B), 0 <µ(B) <∞, B ⊆ A, B ∈M}.

For any such B , we can make a clever choice of f that gives
us a uniform upper bound on µ(B). Choose

f = (sgn g )χB ∈ L∞
0 which gives us 〈g , f 〉 =∫

B |g (x)|dx.
(38)

If p ∈ [1,∞) the relative largeness of f depends on µ(B),
whereas if p =∞, this ’largeness’ equals 1:

‖ f ‖p =
{
µ(B)1/p p ∈ [1,∞)

1 p =∞.

To obtain a lower bound for the integral on the right of
Equation (38), notice that the simple function εχA is a sub-
ordinate of χA |g |. By the definition of the integral on L+,
we see that

εµ(B) ≤∫
B |g (x)|dx ≤ ‖ f ‖p Mq (g ).

Developing this further, we see that

µ(B)1/q ≤ M q
q (g )ε−q ∀q ∈ [1,∞).

It follows upon taking the supremum over all such B , that

µ(Aε) ≤ M q
q (g )ε−q <∞. (39)

■

3.13. Measure Concentration

An estimate such as the one in Eq. (39) is also known as
a Chebyshev-type estimate. More generally, the Chebyshev
inequality [Fol13, Thm 6.17] tells us that for any complex-
valued measurable function f ,

µ
(
{| f | >α}

)≤ ‖ f ‖p
pα

−p for all α> 0, p ∈ (0,∞). (40)

Let (X ,M) and (Y ,N) be measurable spaces. Estimates
such as Eq. (40) help us collect qualitative information
about the asymptotic behaviour of a mapping T : E(M) →
E(N), that is not necessarily linear or continuous.

These types of estimates are used in studying the rate of
convergence of a stochastic learning algorithm and is also
called a concentration inequality. The word ’concentra-
tion’ refers to the concentration of measure, or mass inside
the closed f -balls {x ∈ X , | f (x)| ≤ c} where c should be
thought of as the radius of such a ball. See Boucheron 2013
for a comprehensive overview on this subject.

One should think of conv. in meas. as a natural extension
of convergence w.r.t. the L∞ norm, but for functions which
may not even be in L∞ (see Def. 3.16). It is an easy exercise
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for the reader to verify that ‖ fn − f ‖∞ → 0 if and only if for
every ε> 0,

{µ({| fn − f | > ε})}∞1 ∈ l0.

Definition 3.16
Let fn , f ∈ E(M), we say that fn → f in measure if
for every ε > 0, the sequence formed by the numbers
µ({| fn − f | > ε}) is in c0.

The notation c0 comes from point set topology. If X is a
LCH space (see [Fol13, Chap 4.5]), then

C0(X ) = complex-valued, continuous, vanishing functions on X .

If we equip N+ with the discrete topology (see [Fol13, Chap
4.1]), then c0 =C0(N+) [Fol13, Ex 7.20]. The reason why we
say that conv. in meas. is a generalization of L∞ conver-
gence is because c0 is the uniform closure of l0, and a lot
of the desirable properties of L∞ convergence such as i)
µ(| fn − f | > ε) <∞, and pointwise a.e. convergence (albeit
by passing to a subseq.) are inherited.

Additional theorems relating the three types of conver-
gences: i) pw a.e., ii) in measure, iii) in norm are proven
in the remaining sections of this article.

3.14. Convergence of Integrals (given pw a.e.)

This section will answer the question of why we care about
pw a.e. convergence at all, since it is relatively weak com-
pared to the other types of convergences. Given fn → f pw
a.e., and a functional I : E(M) →C, we want to know when
does I ( fn) → I ( f ). The general case is out of the scope of
this document. We refer the reader to the remarks left at
the end of this section for references.

Specializing, let p ∈ [1,∞), and suppose fn , f ∈ Lp and
fn → f pw a.e. We know that by Fatou’s lemma,∫

X | f (x)|p dx ≤ liminf
∫

X | fn(x)|p dx.

Natural questions to ask: i) When does ‖ fn − f ‖p → 0? ii)
How about ‖ fn‖p → ‖ f ‖p ? Proposition 3.18 shows that
these two things are equivalent. In other words,

the diff. of norms vanishes iff the norm of the diff
vanishes. (diff. = difference)

To prove this we need a small lemma.

Proposition 3.17 Generalized DCT, [Fol13, Ex 2.20]

Let fn , f , gn , f ∈ L1, suppose that fn → f pw a.e, and
gn → g pw a.e.,

| fn | ≤ gn and
∫

gn(x)dx →∫
g (x)dx.

then
∫

fn(x)dx →∫
f (x)dx.

Proof. Left as an exercise. Caution: pay attention to which
integral you are using, the L1 integral for non-negative
functions or the L+ integral. The first one allows subtrac-
tion under the integral sign, while the second one may
not. ■

Proposition 3.18 [Fol13, Ex 2.21, 6.10]

Let p ∈ [1,∞), fn , f ∈ Lp . Suppose fn → f a.e., then
‖ fn − f ‖p → 0 iff ‖ fn‖p →‖ f ‖p .

Proof. The proof requires Prop. 3.17, and is left as an exer-
cise. Hint: use Eq. (41). ■
The Brezis-Leib lemma, which is a generalization of Fatou’s
lemma is used frequently in the calclulus of variations to
obtain estimates of functionals just from pw a.e. conver-
gence. As a special case of this, let p ∈ (0,∞), a sequence
of measurable functions fn → f pointwise a.e., such that
limsup‖ fn‖p <∞ for some p ∈ (0,∞), then∫

X
| f (x)|p dx = lim

(∫
X
| fn(x)|p dx −

∫
X
| fn(x)− f (x)|p dx

)
.

For more, refer to wikipedia, and Brezis-Leib 1983. [LL01]
also has a discussion on this in the earlier chapters.

3.15. Convergence of Integrals (given in
meas.)

Now we discuss the situation where we only have conver-
gence in measure. The first result is rather elementary, be-
cause it does not assume that the sequence fn has uni-
formly bounded Lp norm nor that it is uniformly bounded.

Proposition 3.19

Let fn ≥ 0, and fn → f in measure, then f ≥ 0 a.e., and∫
f (x)dx ≤ liminf

∫
fn(x)dx.

Proof. Let fk be a subsequence such that lim
∫

fk (x)dx =
liminf

∫
fnk (x)dx. Taking subseq. preserves conv. in mea-

sure, so we can take a further subsequence of fk (still la-
belled by fk ) such that fk → f pointwise. Since fk ≥ 0 a.e.,
we see that f ≥ 0 a.e. as well. Using Fatou’s Lemma,∫

f (x)dx =∫
liminf fk (x)dx ≤ liminf

∫
fk (x)dx

= liminf
∫

fn(x)dx.

■
If we assume that | fn | is controlled by some integrable
function, then we obtain much better results. The key trick
is to pass to subsequences. It is useful to remember that
([Fol13, Ex 4.30b]) the very overpowered criteria for check-
ing when a sequence converges.
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Let 〈xα〉 be a net in a topological space X . The
net 〈xα〉 → x ∈ X iff for every cofinal B ⊆ A there
is a cofinal C ⊆ B such that 〈xγ〉γ∈C → x. (Note
that every cofinal subset B ⊆ A induces a subnet
〈xβ〉β∈B , see [Fol13, Ex 4.30a])

Proposition 3.20

Let p ∈ [1,∞), and fn → f in measure, suppose that
| fn | ≤ g ∈ Lp pointwise a.e., then
1. f ∈ Lp , ‖ fn → f ‖p → 0, and ‖ fn‖p →‖ f ‖p .
2. If p = 1, then

∫
fn(x)dx →∫

f (x)dx

Proof. 1. We will use the subsequential criterion. Fix a
subsequence fn j . By choosing a further subsequence,
fnk , we can assume that fnk → f pointwise a.e. For ev-
ery k ≥, we have the uniform dominance

| fnk − f |p ≤ 2p(|g |p +| f |p) ∈ L1. (41)

This proves that ‖ fnk − f ‖p → 0 as k → ∞, and coinci-
dentially also proves ‖ fn − f ‖p → 0 as n →∞. The argu-
ment for ‖ fn‖p →‖ f ‖p is similar, we just dominate:

| fn j |p ≤ |g |p ∈ L1.

2. Same subsequential technique. If fn j is a subsequence,
choose a further subseq such that fnk → f a.e. we know
that from Part 1 that f ∈ L1, and because

| fnk | ≤ |g | ∈ L1,

by the dominated convergence theorem:
∫

fnk (x)dx →∫
f (x)dx. This holds for every subsequence fn j , and we

conclude
∫

fn(x)dx →∫
f (x)dx.

■

two general themes of convergence in measure

1. conv. in measure is preserved under taking subse-
quences.

2. conv. in measure implies conv. pointwise a.e for some
subseqeuence

3. if we want to show that for some functional I ( fn) → I ( f ),
we can use the subnet convergence trick. Fix any sub-
seq. I ( fn j ), it suffices to show that there is a further
subseq. with I ( fnk ) → I ( f ).

In choosing this further subseq. we can assume that
fnk → f pointwise a.e. If in addition the entire sequence
is uniformly dominated, then we can use DCT or GDCT.

4. to compute the liminf or limsup of a functional, we
can assume that the value is attained by a subsequence.
(which inherits conv. in measure).

3.16. Convergence in Measure for Bounded
Measures

The topology of conv. in meas. becomes completely metriz-
able if µ(X ) < ∞. In this case, it is customary to use the
metric

ρ( f , g ) =
∫

X

| f (x)− g (x)|
1+| f (x)− g (x)| dx where f , g ∈E(X ).

(42)
For proofs and more generalizations, see [Fol13, Ex. 2.32
4.56, 5.50, Thm 2.30]. We remark that µ(X ) < ∞ neces-
sary but not a sufficient condition. In the case that µ is a
finitely-additive vector measure, there is a notion of inte-
gration and a formula similar to Eq. (42) that metrizes conv.
in meas., we refer the reader to [DS58, Chap 3].
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