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1. Preliminaries

Notation and Measure Theory

e N=1{0,1,2,...} is the set of natural numbers (which in-
cludes 0),

e N* ={1,2,...} is the set of counting numbers,

e Z={0,-1,+1,...} is the set of integers,

e Qis the set of rational numbers,

¢ Ris the set real numbers,

* Cis the set of complex numbers, and

* R* = [0, +00) are the non-negative reals.

Suppose that X and Y are normed vector spaces over C.

e L(X,Y)=linearmaps T: X — Y.
e L(X,Y)=cont. linearmaps T: X — Y.
e X* = continuous dual of X

Let (X, M) be a measurable space.
e £(M) = complex-valued meas. functions on X.

Sequences will be indexed by N* and will be assumed to
take values in a vector space. We say that x,, is finitely sup-
ported if x,, = 0 for all sufficiently large n.

* [y = sequences that are finitely supported,

* o = sequences that converge to 0 (range is normed),
e [* =real-valued sequences x, = 0 for n = 1.

I™* = real-valued sequences x;, >0 for n > 1.

We will always assume that all measures are o-finite. For
most of the theorems however, this assumption is not nec-
essary. Let u be a o-finite measure on M.

* A measurable function ¢ : X — C is a simple function
if its range ¢(X) is a finite subset of C. Every simple
function is of the form

(,b:chjXEj where ¢j€C,E;eM, j=1,...,n.

e X(u) =v.s. of simple functions,
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e ¥, (w) =v. subspace of Z, vanish outside a u-finite set

Zo(u) =1 ez, ulig # 0}) <oo}.

e [°°(u) = B. space of essentially bdd functions, with
norm

| fleo = inf{a>0,utllfI > ah) =0} ¥feL®(w)

e L3°(u) = v. subspace of L>(u), vanish outside a u-
finite set.
e L*(u) = meas. functions, values in [0,00].!

The subsets =* (u), and Za' (u) are defined as positive cones
of (i) and Xy (1), whose elements in * () and X (1) take
values in [0,00). We recall that if g € L* (), the integral with
respect to  is the supremum over the integral of its non-
negative simple subordinates.

f g(x)dxzsup{f P(x)dx, p<g, ¢€Z+} )
X X

If p is o-finite or supp (g) = {x € X, g(x) # 0} is o-finite, we
can shrink the family of lower approximants on the right
hand side of the Equation (1).

fg(x)dx:sup{f <p(x)dx,(psg,<pezg}. @)
X X

Lemma 1.1 [Foll13, Thm 2.10]

Let (X,)M) be a measurable space, if g: X — C is mea-

surable, there exists a sequence of simple functions

{¢n} € Z, such that

1. ¢, — g pointwise,

2. |¢nl / |gl pointwise.

3. If p is o-finite, or u({| f| > €}) < oo for all €, we can
take {¢p,,} < Z.

Any sequence satisfying first two properties in Lemma 1.1
is said to be an increasing sequence of subordinates of g. If
{fn} is any such sequence, then [|f,(x)|dx / [|g(x)|dx.
Let p be a number in [1, +00),

LP()={feM, [x|f(x)|Pdx < +oc}, and

LP(u) = LP (X, ) /pw a.e.
If feLP(u) or LP(u), we write

1£1p = (fx 1 £ 1P dx)' P, 3

It is clear that LP (u) is a B. space for p € [1,00].

1.1. Local Integrability

110,00] has the extended Borel o-algebra. See [Fol13, Chap 2.1, 2.2, Ex
2.1,2.2,2.4]

Definition 1.2
A measurable function g : X — C s locally integrable if

flg(x)ldx<oo forall EeM, u(E) <oo.
E

The v.s. of all locally integrable functions (modulo a.e.

sets) is denoted by L] ().

If g € LP for p € (1,00] then we can identify g € L}OC because

fElg(x)ldefE(lg(x)lp+l)dx<00- 4

Letge L} , consider the scalar product on Lg®
oc

&N =fxg(x)f(x)dx VfeLy. (5)
The integral in Equation (5) converges absolutely, since

180 f O = I fllooX 018X € LT
Given a locally integrable function g, the next proposi-
tion shows that its L9 norm (which is possibly equal to
oo) can be computed through its scalar product on Lg°.

Proposition 1.3 [Fol13, Thm 6.13, 6.14]

Given alocally integrable g, it is in L7 iff*

My (g) =sup{g, f)l, FE L, Ifl, =1} <co, ()
and if this is the case, then [ gll; = My (g).

%implicit g € [1,00], p conjugate to g

Proof of Proposition 1.3. We can break up proposition into
two statements and prove them separately.

(i) Ifge L9, then My (g) < lIgll4-

(i) fge L,
Mg(8).

Statement i) says that if g € L9, its scalar product on {f €
LP, I fllp = 1} is uniformly bounded by its LY norm. This
follows from Hélder’s inequality:

Kg PI=< gL <Iflplgly forall feLy.

Hence Statement i) is proven. We turn to the proof of

Statement ii).

1. If g € [1,00), we know that supp (g) is always o-finite (in
the case where p is not o-finite, see Lemma 3.15). Let
{¢n} € Zp be an increasing sequence of subordinates of
g (justified by Lemma 1.1). Then,

flg(x)l”’dx=supf | (x)|7 dux.
n JX

To show that |gll; = Mg4(g), it suffices? to con-

and M;(g) < oo, then g € L9 and | gl4 <

2this is because £ — /9 (¢ € [0,00], q € [1,00) satisfies the hypotheses
of Lem. 3.8
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trol the asymptotics of [|¢,(x)|9dx (meaning
liminf [ ¢, (x)19dx < My(g)).
lpn(x)]7dx
lpnllqg = Mﬁ )]
ldnllg
Foreachn=1,2,..., let us define
x99t
Wp(x) = M(sgng) €Ly, )]

-1
[

An easy calculation will show that y,l, = 1. We
can bound [|¢ | 4 using the scalar product (g, ,) (see
Equation (7)) because each ¢, is a subordinate of g.
This is accomplished by ’stealing’ a factor of |¢, (x)| un-
der the integral sign.

lpn(X)19d
”%”q:fxfp_w
lpnll

_ Jx19n(@)17"' Ggng)g(x dx

-1
Il

< My4(g)

2. If g = oo, it is fruitful to consider an equivalent charac-
terization of || |l co-

lglloo = sup{a z0,pu(fxe X, IgX) = a}) > 0}. 9)

If |glloo = 0, then there is nothing to prove. So in the
case that || glloo > 0, we consider the lower approximants
to Iglleo- Let 0 < € < |Iglloo, the set A, = {|g| > €} must
have positive measure (possibly co). Our measure p is
semifinite, so we find a measurable subset B of A with

0 < (B) < 0.

We note that B is a subset of A, so |g(x)| = ¢ for a.e.
x € B. To show that € = M,(g), we will evaluate g using
the averaging operator

fz=u(B) 1 yp5gng).

It is easy to see that fp € Lg°, and || fgll; = 1. The scalar
product of fp with g gives the expression

1
(8 fB) = @/B lg(x)ldx.

Our previous note tells us that € < (g, ) < M, (g) for all
€ <|Iglloo- Sending € towards || gll.o proves Statement ii).

Few remarks on the proof of Proposition 1.3. Suppose that
we have a quantity b € R that is defined by some kind of
limiting process (i.e. b=1limb,, b=supB~, b=infB*, and
so on). The task of estimating the size of b can always be
reduced to the task of bounding or tagging along the terms
that lead up to b. More precisely, suppose {a,}, {b,}, and
{cu} are R-valued sequences, where b, — b € R. If a, <

b, < ¢, eventually, then
limsup a, < b <liminfc,. (10)

[Rud76, Thm 3.19] contains a proof of Equation (10). By
giving ourselves some wiggle room, we can pick any se-
quence {b,} as long as it defines the same limit b. We can
also think of the extended reals R as an equivalence class
of monotone, R-valued sequences. In this case defining
sequence can be taken to be monotone. By passing to a
subsequence, we can also take {b,} to be Cauchy with a
specified rate of decay and integrable whenever b € R.

Specializing, elementary integral estimates for [ g(x)dx,
where g € L can be obtained if we control the integrals
over the subordinates of g. The m.c.t. tells us that we
can choose any sequence of subordinates {¢,} < L*, as
long as ¢, /' g pointwise a.e. The construction of a suffi-
ciently well-behaved sequence {¢,} depends heavily upon
the problem you are working on: p-invariant group ac-
tions, properties of g (boundedness, growth), properties
of the domain X (topology, o-finiteness), etc; just to list a
few things that one can leverage if available. In the case
of g € [1,00) in the proof of Statement i), our choices of b,
and ¢, are by, = |pnlly /" 1gllg, and ¢, = (g, ¥ n) = by, re-
spectively.

1.2. Convergence in Measure

A sequence {f,;} < E(M) is said to converge in measure (ab-
brev. conv. in meas.) to f € E(M) if for every € and 6§ > 0,
there exists N € Nt such that

plxe X, |fu(x) - f(x)|>€) <6 whenever n=N.?

If f,, — f in meas., we think of f as the best possible rep-
resentative (modulo a.e. sets) of {f;}. Specifically, but still
on an informal level, the relation between different types
of convergences is as follows.

conv. innorm (1 < p < o0)
implies conv. in meas.,

which implies subseq. conv. pw a.e.

Proposition 1.4

Let fy, f, 8 : X — C be measurable functions.

1. For p € [1,00], if | fu — fll, — O, then f;; — f in
meas.?

2. If f, — f in meas., then f;,, — f a.e. for some sub-
seq.

3. If f, — f in meas., and f,; — g a.e. for some sub-
seq., then f =g a.e.

31 don't like this definition as well. But keep reading for important in-
sights.

Updated 2024-11-30 at 19:54

Page 3



Riesz-Thorin Interpolation & Applications

2. Riesz-Thorin Interpolation

@ fyn, f are not necessarily in LP.

(Terse) Proof. 1. The case for p = oo follows from the def-
inition. If p € [1,00), use Chebyshev inequality, for any
£>0,

p(llfn=f1>eN<lfu—flpe? —0.

2. Let ej € ¢cgnI™" be any specified rate of decay. Let
nj be an increasing sequence of numbers such that
supmznjy({lfm—fl >ej}) < 27/ for every j = 1. Set
Aj={lfn; - f1>ej}, then }3° u(A;j) < comust mean that
p(imsup A;) = 0. (This comes from Borel-Cantelli, see
[Fol13, Thm 10.10a]). We know that x € A =limsup A;
iff Ifnj (x) = fx)] # (‘)(ej)4. So that the complement of
A is precisely the points x such that the pointwise rate
of convergence |f,; (x) — f(x)| = O(e;). So that f,, — f
pointwise on A°.

3. If f,, — g for some subsequence, we can pick a fur-
ther subsequence f;; of fy, that converges pointwise
to f. This is because taking subsequences also pre-
serves convergence in measure. Let E;, E; € M such that
W(ES) = u(ES) = 0, and f,, — g pointwise on Ej, and
fnj — f pointwise on E». If x € Ey N E» (which has null
complement) then

flx)= limfnj (x) =lim f,, (x) = g(x).

2. Riesz-Thorin Interpolation

To prepare ourselves for the proof of Riesz-Thorin interpo-
lation theorem, we will recall a few needed results and go
through a several warm-up exercises.

Suppose ¢, 7 € [1,00], g # oo. For any f € L9, there is a nat-
ural way of resizing the magnitude of f so that itisin L.

Definition 2.1
Letg,r€[1,00], g # 00, f € L9. If f =|f|(sgn f)* is the
polar decomposition of f, we define

= :{Ifl"”(sgnf) r# 00

11
sgn f T = o00. (an

Afor any complex z, sgn z = z/|z| whenever z # 0, and sgn0 = 0.

We offer a quick proof for the fact that fr isin L", whose
norm is determined by

qlr
||fr||r:{”f“q r#eo 12)

lor0 r=o0.

4we saythath = O(ej) ifflimsup\XjI/ej <00

e If r # oo, then ||-||, is computed directly using the in-
tegral
IIfrII; :fxlf(x)|(‘7’”rdx:fxlf(x)lq = ||f||Z-

e Ifinstead r = oo, then ||sgn f |l = 0 iff f = 0 pointwise
a.e, which proves Eq. (12).

Proposition 2.2 [Fol13, Thm 6.10]
Fix t € [0,1] and suppose p; € [po, p1] is given by
pit=0-0pyt+Opt (13)

1. Forany f € LP°nLP?, jts LP* norm can be estimated
interpolation inequality

£, < IFI5 20 A1E. (14)

For the proof of the interpolation theorem however, a spe-
cialized version of Lem. 1.1 is needed.

Lemma 2.3

Let 1 < pp < p; < p1 <00, and f € LP:. There exists a
decomposition f = fy + f; € LP° + L”1, and a sequence
{bn} < 2o, such that ¢y, = ppo + Ppn1 € Zo + Zp. This se-
quence satisfies

1. ¢, — f pointwise a.e., ¢,; — f; pointwise a.e (j =

0,1),
2. |pul /| f| pointwise a.e., [pnjl | fj| pointwise a.e.
(j=0,1),
3. ll¢pn—fllp, — 0, and II(Pnj—fjllpj —0(j=0,1).
Proof. [Fol13, Thm 6.9, 2.10a, b] [ |

For the next proposition, we will assume that (X, M, ) and
(Y,N,v) be positive, o-finite measure spaces. The state-
ment remains valid if we assume p, v are semi-finite mea-
sures [Fol13, Thm 6.27].

Proposition 2.4 Riesz-Thorin Interpolation, [Foll3,
Thm 6.27]

Let 1 < po, p1,4o0, g1 < oo, and constants M; = 0 (j =
0,1). Suppose we are given a linear mapping T

T: (LP° () + LP' () — (L9 (v) + LT (v))

which is (pj, q;) stable and bounded (j = 0,1). That is,
T(LPi(uw)) < L9 (v), and

ITfllg; < Mjlifllp, forevery feLPi(u).

Forany t € (0,1), let p;, g; be exponents defined by the
linear equations

pit=0-0py'+@0pr!
g7 =0-0q;" + (g

Then, T is (py, q;) stable and bounded, and [T f 4, <
M| fllp, for every f € LPt(u) where M, = M(()l_” MY).

Proof. Letus consider this problem in the abstract for a lit-
tle while. By convention, if p = oo, then we write p~! = 0. It
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will prove to be useful to define the exponents ry, 7, and r;
to be conjugate to g, g1 and ¢g;. A straightforward calcula-
tion will show that

==yt + @t (15)

If the exponents pj, g; are in [1,00], their reciprocals must
fall inside the interval [0,1]. The linear equation that de-
fines p;! shows that p;! is in the strict interior of a line
segment with endpoints p; land pl‘l.

Note 2.5

The extreme points of [0,1] are {0, 1} (see appendix for

areview of what an extreme point is). From which we
deduce

pileio,} = pil=pl=p;’
riltef0l = q;t=q; =g €0,13.

There is no typo in the second equivalence, reader
should verify with Eq. (15).

The main argument of the proof consists of using Def. 2.1
in conjunction with the three lines lemma (Lem. 3.3) to ob-
tain a uniform estimate for | T fl;, where f ranges over a
dense subset of LPt with bounded norm. The set X is a
natural candidate for this. That is to say, we will prove

ITfllg =Ml fllp, forall feZo, Iflp,=1.  (16)

With this, we can define a continuous linear operator S :
LPt — L% that extends T|5, by uniform continuity. More
explicitly, and at the risk of sounding pedantic, given any
f e Ll let {¢py} < X converge to f in LP?, and S(f) be the
element such that

1S/ = T(pn)llg, — 0. a7

This uniquely characterizes S(f), because bounded linear
operators such as T'|z, map Cauchy sequences to Cauchy
sequences. A similar argument also shows that

IS(Hlg, < Mell fllp, forevery felLPr. (18)

Postponing the proof for the estimate in Eq. (16) for the
moment, let us verify that S = T in the case where

1< po<pr<p1r=oo. (19)

For any f € L”t, we would like to make a special choice of
¢, that will be useful in some of the computations later
on. The key idea is that we can improve the convergence
properties of ¢p,, — f if 1) we take our lower approximants
from a smaller class of functions, and 2) we pass to a suit-
able subsequence.

Lemma 2.3, which we will restate for the convenience of
the reader, gives us an approximation of f in LP’ that also
'splits’ in LPt € LPO + LP1,

There exists a decomposition f = fy + fi € LP° +
LP', and a sequence {¢,,} < Xy, such that ¢, =

dno + Pn1 € Zo + Zo. This sequence satisfies

1. ¢ — f pointwise a.e., ¢, ; — f; pointwise a.e
(=01,

2. |pnl /" |f] pointwise a.e., |¢njl / |fjl point-
wise a.e. (j =0,1),

3. lpn—fllp, —0,and lipn;— fillp, — 0(j=0,1).

By passing to a subsequence of ¢p,,< we can use the proper-
ties of T to our advantage. For j =0,1,

IT(Pnj) = T(llg; = Mjlipnj— fillp;-
Convergence in norm (1 < ¢; < oo) means that we can rela-
bel our sequence ¢,; and assume that T'(¢,,;) — T(f;) pw
a.e. (This comes from Prop. 1.4 for those that are unaware).
Adding the two pieces together T (¢0) + (1) gives us
T($pn) — T(f) pointwise a.e. (Because f is in the domain
of T

Since 1 < g; < oo, and |S(f) — T(¢n)l 4, — O, the sequence
{T(¢pn)} of N-measurable functions converges in measure
to S(f). One thinks of S(f) as the best possible representa-
tive of the sequence of measurable functions {T'(¢,)}. By
a.e. uniqueness of this representative (proven in Prop. 1.4),
we get S(f) = T(f) pointwise a.e.® This proves that S is an
extension of T under the assumption in Eq. (19).

We now tackle the estimate Eq. (16) (with the assumption
1 < po < pr < p1 < oo still in place). Given f € Xy, with
I fllp, =1, the norm | T f|4, can be estimated by looking
at the relative largeness of the scalar product (proven in
Prop. 1.37)

(Tf,: Ly —C.

Write f = (sgn f) Y. |cj|)(5j. For any z € [1,00], the rescaled
version of f asin Def. 2.1, is given by

> _ JenHXlcjlP e xg; 1 #00

fz=

sgn f
We further subdivide the condition Eq. (19) into two cases.
The reasoning for this is because of the hypothesis of the
rescaling trick.
1. If go = q1, to compute || T f4,, we fix an arbitrary g €
Ly (v), with [|gll, = 1. The linearity of T and the eval-

uation map (g, -) allows us to separate the effects of the
rescaling from the action of g on T(yg;). For any z # oo,

(& T = [y g T(f)(»)dy
= lcjIP e B (g, T(xe))  (20)

If z = 0o, a formula similar to Eq. (20) can be obtained.

I = oQ.

6the reason why we cannot use positive definiteness of some of the
norms involved qg,q1, and q; is because the three sequences T(¢y),
T(¢pno), and T(¢,1) have limits that lie in three different L7 spaces.
7remember that v is o-finite (can be relaxed to semifinite)
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2. If qo # 1, then q;l ¢ {0,1}. Which rules out the possi-
bility that r; = co. For any g € X, lgll4, = 1, suppose
thatg=Y Idkleiargdkxpk. We can use the rescaling trick
on both sides. Writing g, = |g|"*/?(sgn g), we see that for
any z # oo,

& T =y &M T dy
— Z |dk|r;/zlcj|pt/zei(argcj+argdk) <XF/C’ T(XEJD 1)
The sum in Eq. (21) is over finitely many j, k. A similar
equation is obtained if z = co.

With g € L, or g € 2 held fixed, we will show that the
scalar product is bounded by M;. Explicitly this means

{|<g, T(Fp)l<M:  dqo=a 22
K&ri» T(fp )= M:  qo # G-

The important part of Eqs. (20) and (21) is in the exponents,
ie. [cj|Pt'# (resp. |cj|Pt'#|di|"'%). It is also useful to re-
member that fp[ = f, and g,, = g whenever r; # oo, as the
exponent cancels out nicely. For any w € C, we define the
function ¢ :C — C,

_ 1 & TUu-wpg'+@py? do =41
pw)=4 _ ~
<g(l—a))r0‘1+(a))r1‘1’ T(f(l—w)pal+(w)pl‘1)> qo # h
(23)
In both cases, ¢ : C — C is a holomorphic function because
of w is placed in the exponent. Furthermore, if Rew € {0, 1},
the relative sizes of the functions
8u-wrt+@ryt A [ w)ptsw)p
remain unchanged as we perturb w by a purely imaginary
number. That is to say, suppose that Rew = j € {0, 1}, then
||f[1,w)pal+(w)pl—1 ”pj = ”fpj ”Pj =1, and (24)
||§(1—w)r]71+(w)r]71 ”rj = ||§rj ”rj =1 (25)

By considering the cases where Rew = j and Imw = 0, we
obtain

e T(fpM=M;  qo=aq

If Rew = j € {0,1}, and Imw # 0. We can use the 'norm-
invariance’ (Eq. (24)) and see that |¢(w)| < M;.

Here is where the complex analysis comes in. By the three
lines lemma, Lem. 3.3, this gives us an estimate for ¢(¢)

lp(0] = MM = M,
where f has the same meaning as before, i.e. £ € (0,1). In
both subcases of 1 < pg < p; < p1 < oo, we conclude either

directly or by a density argument of X (v) € Lg°(v), that the
number

ITfllg, =supil{g, T, g€ L), liglr, =1}

is bounded above by M;. Since the simple function f is

chosen arbitrarily, this completes the proof for the esti-
mate under the assumption 1 < pg < p; < p; < oo.

Let us tackle the remaining cases. If py # p;, we can al-
ways relabel the exponents such that 1 < py < p; < p; <
oo. It remains to prove the estimate when py = p; = p1
(and qo, g1, g; unconstrained). This is straightforward be-
cause we can apply the interpolation inequality (proven in
Prop. 2.2). For any f € LPt, the function T f is in L% n L9,
which means

T fllg <ITAIG PNTFIY) < Milifllp,.  (26)
The extension argument (and the proof of S = T) is unnec-
essary because Eq. (26) holds for every f € L”t. Therefore
T restricts to a (py, ;) stable and bounded linear operator

with || T|| = My, and the proof of the interpolation theorem
is complete. [ |

2.1. Application to the Fourier Transform

Corollary 2.6 Hausdorff-Young, [Foll13, Thm 8.21,
8.30]

Let1 < p <2 and 2 < g < oo be conjugate exponents.
The Fourier transform on R”, F: (L! + L2)(R™) — (L +
L?)(R™) is a norm-decreasing (p, q) stable linear op-
erator. A similar result holds for F : (L! + L?)(T") —
(I%° + 12)(Z2") as well.

Proof. This follows almost immediately from the Riesz-
Thorin interpolation theorem other than one small thing.
If pj, q; are exponents in [1,00], and pj, g; are Holder con-
jugates (j = 0,1), then py, g, is a conjugate pair for any
P1 q: defined as in Prop. 2.4. [ |

2.2. Application to Conditional Expectations

Definition 2.7
Let (X,M, u) be a probability space, and N < M a sub
o-algebra. The conditional expectation is a linear map

ECIN): LY OV, w) — LYON, ), @

defined by its action on N measurable sets. That is, for
every Ae Nand f e L' (u),

[afdpx) = [LE(F IN ) dp ). @7

“py (N, u) we mean (N, u|N) i.e., the restriction of the measure
bgor contrast, we use x’ on (X, N, u|N), and x on (X, M, ).

Proposition 2.8 [Fol13] Ex 3.17

Let (X,M, ) be a finite measure space (u = 0) and
N a sub o-algebra of M. Given a real-valued f €
LY (X,M, p), there exists g € L' (X, N, v), where v = p|
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such that

Jafdu=[,8dv, VAeN.

The function g is uniquely determined v a.e. More-
over,if f=0 (ua.e), theng=0(va.e)

Proof. The uniqueness of g follows from the ability of in-
tegration over measurable sets to separate points in L.
[Fol13, Thm 2.23] Let n; be a signed measure on M, de-
fined by dn; = fdu. Let n2 = n1ly. We can apply Radon-
Nikodym theorem and decompose 1, with respect to v. We
obtain g € L'(X,N,v), finite signed measures (on N) p, 1,
suchthatA Lv,p < v,dp=gdv,andny = A+p. The proof
is complete upon showing A = 0, and this occurs ifand only
if n, < v. Because f is u-integrable, 1 <« u, so Ker(u) <
Ker(n;).® Fix any A € Ker(v) = N nKer(u) < Ker(n;), then
12(A) = p(A) = 0. The last claim is obvious. |

Because p is a finite measure, X is the vector space formed
by taking linear combinations of indicator functions. The
equation defining the cond. exp. on L' extends naturally
to a scalar product on X as follows. Fix any f € L'V, )
and denote its conditional expectation by g, we can write

(frxa) =1 f)dPx) = [,g(x)dP (x") =(g,xa) VAeN.

(28)
Ifp = ZIijXA,» where ¢; € R and A; € N, by linearity on
both sides of Equation (28),

(f,) =[x fFX)p(x)dP (x)
=[x 8(xXNp(x")dP (x') = (g, )

for every ¢ € Zy. Since Zo(N,p) is dense in L®(N, )
(the ess. bounded, N-measurable equivalence classes, not
pointwise functions), we arrive at Equation (29), which
some people prefer to take as the definition of the cond.
exp. (present author included)

(f,by=(g,by forevery be L*N,p). (29)

This highlights a certain functional analytic significance
that is not present in the original definition. Namely, the
cond. exp. is the operator adjoint of the inclusion map of
L®MN, ) — LV, ). Unfortunately, most introductory
texts do not characterize dual space of L* as the space
of finitely additive measures, or (LM, u))* = ba(MV, y).

Proposition 2.9

For p € [1,00], the conditional expectation as defined
in Equation (27) is LP stable, meaning it sends f €

8] realized that we have not defined the kernel of a complex o-additive
measure yet. But we can think of Keru = {E € M, |u| = 0} where |y| is the
t.v. measure of

LP(MV, ) to E(f | N) € LP(N, ). Moreover,

IECF INp v < I fllp v, forevery  f e LP (M, ).
(30)

Proof. We will use Riesz-Thorin’s interpolation to show the

LP stability of the cond. exp. First we consider the extreme

cases at the endpoints of [1,c0].

l.Ifp=1, fe Ll(M,p), let g = E(f | N) be its conditional
expectation. We can compute the L' (N, ) norm of g by
integrating against sgn g € L°(N, p):

||g||Ll(:N,,u) =[(f,sgngl

< ||f||Ll(Jv[,ﬂ) ||g||L°°(M,p) = ||f||Ll(Jv[,,1)
More is true, if we take f = 1 (the constant function),
then | gl Ny = £l OV So that E(- | N) is continu-
ous, and its operator norm is equal to 1.

2. If p=oo, fix fe LM, p),letc = ”f”Loo(M,”). The funci-
ton h = c+ f is non-negative pointwise a.e; and be-
cause L embeds continuously in L! for finite measure
spaces, we can take its cond. exp. Using linearity of the
cond. exp.,

E(h+fIN)=c+E(f|N)=0.
Using the fact that if g, g2 € LN, ), g1 < g iff g1du <
g»du as positive measures, we see that
—c<E(f|IN)<c pointwise a.e..

This proves [IE(f | N)llzeov, ) < Il oo vt -
Thus, the assumptions of the Riesz-Thorin interpolation
theorem are satisfied, because p and its restriction u|N are
probability measures. This gives us L? stability for p €
[1,00]. Moreover, the operator norm of E(- | N) : LP (M, p) —

LP(N, ) is at most 1 — a result also from the interpolation
theorem. u

3. Notes and Generalizations

3.1. Characterization of Intervals

Equation (9) deserves some our attention. We restate it for
the convenience of the reader.

Iglleo =inf{a=0, pxe X, |g(x)] > a)) =0}
= sup{a >0, p(xe X, |gx)| > ah) > 0}.
Suppose we are given a non-empty set A < [0,00] such that

for any x € A, [x, oo] € A, then either A = [c,00]
or A = (¢,00] where ¢ = 0; and either A€ = [0, ¢) or
A€ =10,c].

The number c is also the infimum of A, from which we can
deduce that inf A = sup A°. We think of the set A (resp. A°)
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as being defined by a single point in R. An alternate way of
thinking about this is to equip [0, oo] with the order topol-
ogy [Fol13, Ex 4.9], and use 0A = 0 A€ = {c}.

3.2. Extreme Points

Definition 3.1
The extreme points of a convex subset C in a vector
space X are the set of points p € C such that

Vx,yeC, ¢;(x,y) #p Vte(0,1).

Proposition 3.2 Krein-Milman, [Yos12, Chap XII]

Let X be al.c.s. and C a precompact convex set in X.
Then, C is equal to the closed convex hull of its ex-
treme points.

Let f: C — R be a convex function defined on a bounded
convex domain in R”, and S = {x;,..., x;} be the set of ex-
treme points of C. (One can show that in finite dimensions,
S is finite). If x € C, it can be written as the cv. combination
X= Z’f t; x;, and by convexity of f:

fx)= f(zlf tixi) < Zf ti f(x;)
< (Z’l‘ t,-)sup £(S) = £(S).

In other words, having a control over the extreme points of
C gives us abound on all of C. A complex analytic analogue
of this is the following.

Lemma 3.3 Three Lines, [Foll13, Thm 6.26]

Let ¢ be a bounded continuous function on Re(z) €
[0, 1] thatis holomorphicin Re(z) € (0,1). If |¢(z)| = My
for Re(z) = 0 and |¢(2z)| = M; for Re(z) =1, then

lp(2)] < My~ " M|

for any £ € (0,1), where ¢ = Re(z).

3.3. Interpolation Spaces

Proposition 3.4 [Foll3, Ex 6.3, 6.4]

The norms in Egs. (31) and (32) make i) (LPONLPY, |-||4)
and ii) (LP° + LP',||-|l,) Banach spaces, such that iii)
LPOALPl s [Pt <, [P0 4 [P1 4

Iflla=11lp, +1f1p, (31)
I fllp =inf{ligollp, +1Ig1lp;, f=8o+g1ae} (32)
(in the right hand side of Eq. (32), we can take g; € LPi)

@< = cont. linear embedding

Proof. A bit tedious, maybe I will skip it or put it in the ap-
pendix. |

3.4. Vector Lattices and the Monotone Conver-
gence Theorem

Definition 3.5

Let V be av.s. over R, asubset V* c V is a positive cone
if

1. ¢1,¢2 € V¥, s0is ¢y + 2, and

2. ifpeV*, thenage V' forall a =0.

The positive cone V* defines a partial order on V, for any
x,y €V, wewrite x < yif y—x € V*. We say that V is a
vector lattice [Yos12] if for every pair x, y € V, there exists
elements z, w € V such that

zsx<w and z=<y=suw,

and if z/,w’ are elements that satisfy the same relation,
then

Z<z and w=uw'.

lattice we write z = x v y, and w = x A y. It is easy to see

that the elements z, w are unique. They are called the

least upper bound and greatest lower bound of x and y.
We use the suggestive notation ¢, , ¢ to mean that i)
{on} <y eV, v < ¢}; ii) the sequence {¢p,},>1 directed by
increasing n is monotone: ¢, < ¢4 atevery n; iil) ify € V
is an element such that ¢p,, <y for all n, then ¢ < y. This
of course leads to a characterization of 'upwards’ conver-
gence using the theory of nets (see [Fol13, Ex 4.9]) which is
beyond the scope of our current document.

Definition 3.6

Let * < V7 be a vector sub-lattice. A functional I :

>t —[0,00]

1. is monotonic if for every ¢, ¢z € ZF, ¢p1 < ¢, im-
plies I(¢1) < 1(2),

2. is sequentially Ls.c. if for every ¢, / ¢ in £*, then
I(¢) <liminf1(¢p,), and

3. is said to satisfy the m.c. property if ¢, / ¢ in T*
implies I(¢y,) / I(¢) in [0,00].

Proposition 3.7 Monotone Convergence Theorem
Let I : =t — [0,00] be a monotone functional. Then
I satisfies the m.c. property iff I is sequentially l.s.c.
Moreover, if we define
I":V*—[0,00]
It (x) =sup{I(¢h), pe ¥, p<x}. (33)

then I'* is a monotone functional, and is sequentially
Ls.c. whenever [ is (resp. satisfies m.c.).

where

Lemma 3.8
Let ¢ : [0,00] — [0,00] be a non-decreasing function,
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and suppose that for every x € [0,00],

(p(x):y lim ¢@().

<X, y—X

For any subset A < [0,00], we have ¢@(supA) =
sup @ (A).

3.5. Lower semi-continuity

There is a topology on R that makes it a Ty but not a T}
space. Let & = {(a, o0)}4er. Since € is closed under finite
intersections, [Fol13, Prop 4.3, 4.4] together tell us it gen-
erates a topology on R. Which we can write explicitly as
Tise = {9, RFUE.

Given two distinct points ty < t; € R, take U = (#; — ¢, +00)
for sufficiently small €. This open set separates f; from
fp, but any open set containing #y must also contain f;.
Therefore (R, Tis.) is Ty but not T7.

This topology is actually way more useful than at first
glance. It provides a weaker notion of continuity in scenar-
ios which are deemed to be too restrictive; where ordinary
continuity refers to continuity w.r.t. (R, Tpay). If X is an-
other topological space, a function I : X — R is lower semi-
continuous (abbrev. l.s.c.) whenever it is continuous with
respect to (R, Jisc). Moreover, if x, — x € X, then

I(x) <liminfI(x,).

Applications of (R, Jjsc) can be found in optimization, the
calculus of variations, partial differential equations.

3.6. Approximation Techniques

We construct an abstract approximation framework. Let
Q be an arbitrary set and X < Q be a subset on which we
define a functional J: X — [0, +00].

Definition 3.9
Suppose for every x € ), we are given a set £, < . We
define the upper and lower approximationsto J,

I'(x)=supJ(x) and I (x)= inzf J(2). (34)
Z€Z,

Z€Xy

The functional J is said to be consistent” if

1. for every x € Q, the set X is non-empty,

2. foreveryzeZX, ze X, and

3. J(z) = I''(2) = I (2) for all z € X, this makes I* an
extension of J.

“More generally, a subset =’ < X is said to be consistent if J|5 is a
consistent functional.

We always assume that J is consistent. The linear or-
dering on [0,00] induces a relation on Q through I =T £

Definition 3.10
Given x, y € Q, we say that x is less than y as measured
by I whenever I(x) < I(y). This is written

x<yy or x<y(meas.]I)

We are ready to discuss three juicy and extremely impor-

tant proof techniques for estimating the sizes of I* (x).

Technique 1 To show x < y (meas. I), it is sufficient to
showX,cX,if I=1" (orZ,c X, whenever I=1").

Let x € Q be arbitrary, we wish to bound I(x) by ¢
(we agree that ¢ = 0 means c € [0, +oo] and 'bounding’
means from above unless specified otherwise).

I*(x)<c or I'(x)<c.
Technique 2 On one hand, if I = I*,
I''(x)<c isimpliedby Z, <c (meas. I),
or X, € {I < c}. On the other hand,
I"(x)<c isimpliedby ¢ =c (meas. ), IpeZ,,

or equivalently: X, Nn{I = ¢} # J. An exercise for the
reader: apply to [Fol13, Thm 1.10, 1.13].

Technique 3 The most important technique by far is to
control the terms leading up to the supremum/infi-
mum.

Since I*(x) is defined by a supremum, it induces a
sequence (¢,) € X, that increases to I (x) (meas. I).
To obtain a bound for I (x), it therefore suffices to esti-
mate (J(¢,)), using another sequence (c,). We end up
with the following condition.

Let I = It and x € Q, let (¢,,) € X increase to I(x)
(meas. I), suppose further that there exists a sequence
(wn) €Q, where

$n=yp,(meas. ) Vn=N
and that liminf, .- I(y,) < c. Then,

I(x) <liminfI(y,) <c
n—oo

3.7. Abstract Approximators

Let =@ and =@ be consistent subsets of X, and write chk) =
PN 2. (k=1,2). Let us define

Ia)(x): sup J(¢) and I&)(x) = sup J(¢) forevery xeQ,

pex pex?

and similarly for I; (x) (k=1,2).

Proposition 3.11 Abstract Fatou’s Lemma

Let x € Q such that for every ¢ € =, there exists a se-
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quence {y,} < Zf) satisfying
J(¢p) < liminf J(y,)4,

(0 <I* x).P

o
then I ©)

(o)

“4equivalently, for every € > 0 there exists ¢ € ZSCZ) such that y, <

¢+ € (meas. J)
band iflimsup J (v ) < J(¢) then Ié)(x) < Ia)(x).

To conclude our discussion, we give two sufficient condi-

tions for Igy = I(;). The first of these two is known as an in-

tersection theorem in nonlinear PDE, the second is a weak-

ened version based on a cofinality argument.

Technique 1 Let =) be generating sets on Q and Jj) :
> — R be functionals defined. Suppose that for every
x € Q, the two generating functionals satisfy an ’overlap-

ping’ condition:
JCEMnJeE?) £9,
then I

0= I(;) (x) and I, (x) < I(Ji) (x).
Technique 2 Suppose there exists ¢ € Zy(x) (k = 0,1)
such that Jo(¢po) < J1(¢1), then I (x) < Ia)(x).

3.8. Scalar Products

Our treatment of the dual space of Ly is heavily inspired by
distribution theory on R”. If we assume that y is o-finite,
we can give L3° a topology that is very similar to the C*™
topology of compact convergence of test functions. A net
(fadaca € Lg° converges to f € LY if there exists E € M,
U(E) < o0, and ag € A such that

supp(feg) €E Va=zay and | fyz— flloo— 0.

If this is the case, we say that f, — f essentially uniformly
on p-finite sets. This allows for the interchange of limits
when integrated against a complex measure v, which is of
course assumed to be absolutely continuous with respect
to u, as f, is an equivalence class of functions. This has
applications in the theory of martingales, for example. We
give a quick proof for the sequential continuity of the scalar
product with respect to this topology. Fix g € L}OC and a
sequence ¢, — ¢ ess. uniformly on u-finite sets in Lg°. Let
E be a p-finite subset such that

supp (¢) U (U°supp (¢pp)) S E,
then the integrands are uniformly dominated as

1g(X)n (%)] < 1g(X)|suplidnllcox & € L' (10).

It is also clear that g(x)¢,(x) — g(x)¢(x) pointwise a.e. By
the dominated convergence theorem,

(& Pn) = [x 8X)Pp(x)dx — [y g(X)p(x)dx = (g, ).

As for how X is related to Lg® (within this new topology),
the proof of [Fol13, Thm 2.10] will show that X, is dense
in LY w.r.t. the topology of ess. uniform convergence on

u-finite sets. This essentially means that the scalar product
is completely characterized by its action on {y 4, ©(A),o0}.

Last thing we have to say about the scalar product: we can
give L}OC(M) the strong operator topology (see [Fol13, Chap
5.4]) with respect to (g,-), which is of course the same as
the subspace topology inherited from weak-* topology on
(LSO) *. The dual spaces for non-Banachable t.v.s. is a com-
plicated matter, and we will not pursue this line of inquiry
any further. We encourage the reader to check out some
of the fantastic texts that have been written [Yos12; DS88;
HS12].

We now compare the claims and the proofs of Proposi-
tion 1.3 with [Foll13, Thm 6.13, 6.14]. We have assumed
that p is o-finite from the beginning. But this assump-
tion can be removed by using Lemma 3.15. The assertions
made in Prop. 1.3, namely Statement i), and ii) loosely cor-
respond to Theorems 6.13, and 6.14 in [Fol13] respectively.

The premise in [Fol13] is that g is a complex-valued, mea-
surable function such that the scalar product (g,¢) con-
verges absolutely for every ¢ € Xy, which is equivalent to
ge L}oc(u) — as the argument below shows.

* Necessity: ya € X9 whenever p(A) < oo.
* Sufficiency: take linear combinations of yg;, where
u(E;) < oco.

Given such a g, Folland also defines the quantity

My(g) =sup{lg. $), pe o, Ipl, =1} (35)

It is easy to see that Mé,(g) = M,(g), but for completeness
we will sketch the proof. The estimate M,’i (8) = My(g) is
obvious. If the sequence {f,} < Ly defines the supremum
M,(g), within any ¢ tolerance we obtain

Mq(g)—ES K8, [

By the density of X < L°: there exists {¢,,} S Zo such that
¢m — fn in ess. uniformly on p-finite sets. Hence

Mg(g)—e< {8 dm)l. (36)
As in the proof of [Fol13, Thm 2.10], we can take each ¢,
to be a subordinate of f,, so ¢, < 1. Using which we

can bound the right hand side of Equation (36) by M,(g)
and conclude M (g) = Mé,(g)

3.9. Finitely additive measures

We turn our attention to L°(M) or LM, ). It is well
known that £*°(M) and L*°(M, u) are Banach spaces. The
dual space of £L>°(M) is the space of finitely additive mea-
sures, and is denoted by ba(M). For more on this, see
[Tol20, Chap 4-6] for an accessible introduction to this sub-
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ject, [Yos12] has a short section on this, and the classic
[DS88, Chap 3].

3.10. Separation of Points

Let Qp, Q) be sets. A collection of mappings I < Q?O sepa-
rates Qg if

flxo) = f(x1) forevery feJ iff xp=x
If we fix x € Q¢ and look at the correspondence f — f(x) as
f ranges in J, we obtain a mapping ¢(x) : F — Q;.

If F separates the points of Qy, then ¢ is an injec-
tion and we consider Q as a subset of Q7.

We give a few examples.

1. [Foll3, Thm 2.23] Let (X, M, u) be a measure space. For
any E € M, we can associate it with yp € L*°(y). (This
mapping is usually not injective.) For any E € M, we
write

(€. = [ reodp
Which means
(E,f)1=(E,g)1 VEeM iff f=ga.e.

2. [Fol13, Thm 5.8b] Let X be a Banach space. The scalar
product

fror=Ffx)
separates both X and X*. To see that (f, -) separates X*:
pick f,g€ X*, then f = giff [ f—gll=0. If | f—gl >0,
there must exist x € X where f(x) # g(x).
3. [Fol13, Thm 6.15] If p, g € (1,00) are Holder conjugates.

(f,cb)quxf(x)gb(x)dx forall feLP and ¢elf.

forevery feX*,xeX

The integrals above converge absolutely, and the scalar
product separates L” and L.
(fr'>q=<g,‘>q lff f=ga.e.
GPrg=Cwdg Iff p=vyae.
The same thing holds for p = 1 whenever p is semifinite.
4. [Fol13, Thm 7.17] Let X be a LCH space, M (X) the space
of complex Radon measures, Cyp(X) be the complex-

valued continuous vanishing functions from X. The
scalar product

(,u,f):ff(x)dx forall pe M(X), and feCy(X)
X

separates M(X) and Cy(X), in other words

)=,y iff u=v
<rf>:<yg> iff f:g
3.11. Norming Sets

Definition 3.12
Let X be a normed vector space, a family of functions
F ={fa: X — [0,00)} is said to be norming for X if

x|l = sup fy(x) forevery xe X.“

%resp. subnorming, supernorming. if > or <

We can rephrase Proposition 1.3 in terms of the following.

For any semifinite measure space, 8” norms L9
o7l
inL , where

8P ={f e LY, Ifl, =1}

[Fol13, 5.8b] For any x € X, if we wish to compute | x|, it
suffices to look at the unit sphere of X*.

Il = max{f (x), I fll =1}

3.12. Semifinite Measures

Definition 3.13 [Foll3, pp.25]

A measure p on M is semifinite if every u-infinite set E
admits a measurable subset F such that 0 < u(F) < 0o.¢

%The authors personally think that this definition is not that great,
see Equation (37) for a more intuitive characterization.

A semifinite measure on M can be thought of as something
that is completely characterized by its restriction onto its
u-finite subset. This is similar to the Lebesgue measure on
R or any Radon measure on alocally compact space [Fol13,
Chap 3.4, 7.1, 7.2]. Once we know the values p takes on its
u-finite subsets, we can approximate every member in the
o-algebra.

Lemma 3.14 [Fol13, Ex 1.13, 1.14, 1.15]

Ex 1.13 Every o-finite measure is semifinite.
Ex 1.14 If u is a semifinite measure, then for every E €
M,

L(E) =sup{/.1(F) <oo, FCE, FeM}. (37)

Ex 1.15 If  is a measure on (X, M), define o (E) to be
the right hand side of Equation (37) for every mea-
surable E. Then i) yy is semifinite, ii) po = p iff p is
semifinite iii) there is another measure v such that
V(E) € {0,00} such that g+ o +v.

Proof. Ex 1.13 Let A, / X be an increasing o-finite
exhaustion of X, for any E € M, if p(E) = oo, then
U(A, N E) / oo by continuity from below.

Ex 1.14 Fix E € M, if u(E) < oo, then the supremum is
attained in Equation (37) and there is nothing to prove.
Suppose p(E) = oo, let us denote the supremum by c. It is
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clear that ¢ > 0 (by semifiniteness).

The rest of the proof requires some additional effort and
is rather technical. Suppose that ¢ < oo, intuitively this
means there is a non-trivial 'gap’ between the p-finite sub-
sets and the p-infinite subsets of E. We claim that the
supremum is attained: there exists F < E, F € M, such that
W(F) = c. Postponing the proof for the claim, we will show
that this gives us a contradiction.

An easy calculation will show that u(E\ F) = oo, and by
semifiniteness again: we can find A’ € E\ F (which is dis-
joint from F), with 0 < u(A) < co. Using additivity, we can
improve upon the supremum by at least (A):

HFUA) =u(F)+ulA >c.

which contradicts that c is the supremum.

Onto the proof of the claim. Let E; = E, A; < E;, with
WA € [c271,c] and then set E> = E1 \ A;. Suppose we have
Aj,...,A,—1 chosen, such that

AjSEj=Ej1\Aj1 Vj=2,...,n-1,
pAefe2d, 27V V) vji=1,...,n-1

This technique is very similar to the decomposition of the
unit interval into almost-disjoint intervals

[0,1]=J 7, 2701,
Set Ej, = E;;—1 \ A;,—1, which has co measure. By additivity,
one can argue that

sup{p(A) <00, ACE,, A€ M} <Y ™2 =2l

There exists a measurable subset A;, of E,, with u(A,) €

[c27", c2~ "=V}, The principle of induction gives us a dis-

joint sequence {A,}$°, whose union attains the supremum:
pUPA) =) T A=Y P2 =c.

This completes the proof.

Ex 1.15 Left as an exercise. ]

For strictly semifinite measure spaces, the proof of Propo-
sition 1.3 requires the following lemma, to make sure that
the support of g is o-finite.

Lemma 3.15 [Fol13, Ex 6.17]

If ge L}OC, q € [1,00) and suppose that M;(g) =
Sup{l(g»f)l» fELgoy ”f”p = 1} <o0. Then)

1. forany e >0, u({x € X, |g(x)| > €}) < oo, and

2. supp(g) ={x € X, |g(x)| # 0} is o-finite.

Proofof Lemma 3.15. If u(supp(g)) < oo, both of the
claims are immediate, so we are free to assume

L(supp (g)) = co. For any € > 0, let us write
A ={Igl> el

The semifiniteness of p (see Lemma 3.14) means that we
can approximate p(A,) by its subsets of finite measure.

1(Ag) =supf{u(B), 0 < u(B) <oo, BS A, Be M}.

For any such B, we can make a clever choice of f that gives
us a uniform upper bound on p(B). Choose

f=(Ggng)xpeLy whichgivesus (g, f)=[;lg(x)dx.

(38)
If p € [1,00) the relative largeness of f depends on u(B),
whereas if p = oo, this 'largeness’ equals 1:

LI, = KB pelleo
P 1 p =oo.

To obtain a lower bound for the integral on the right of
Equation (38), notice that the simple function €y 4 is a sub-
ordinate of y 4|g|. By the definition of the integral on L*,
we see that

eu(B) < [zlg)dx < I fll,My(g).
Developing this further, we see that
uB)7 < Mi(g)e™7 VYqell,o0).
It follows upon taking the supremum over all such B, that
1(Ag) < M (9)e™9 < co. (39)
]

3.13. Measure Concentration

An estimate such as the one in Eq. (39) is also known as
a Chebyshev-type estimate. More generally, the Chebyshev
inequality [Fol13, Thm 6.17] tells us that for any complex-
valued measurable function f,

p(llfl>a) <lflha™ forall a>0, pe(0,00). (40)

Let (X,M) and (Y,N) be measurable spaces. Estimates
such as Eq. (40) help us collect qualitative information
about the asymptotic behaviour of a mapping T: E(M) —
E(N), that is not necessarily linear or continuous.

These types of estimates are used in studying the rate of
convergence of a stochastic learning algorithm and is also
called a concentration inequality. The word ’concentra-
tion’ refers to the concentration of measure, or mass inside
the closed f-balls {x € X, |f(x)| < ¢} where ¢ should be
thought of as the radius of such a ball. See Boucheron 2013
for a comprehensive overview on this subject.

One should think of conv. in meas. as a natural extension
of convergence w.r.t. the L norm, but for functions which
may not even be in L™ (see Def. 3.16). It is an easy exercise
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for the reader to verify that || f;; — flloo — 0 if and only if for
every € >0,

{ullfn—f1> €Ny e lo.

Definition 3.16

Let f,, f € EOV), we say that f, — f in measure if
for every € > 0, the sequence formed by the numbers
ulllfn— f1> €} isin co.

The notation ¢y comes from point set topology. If X is a
LCH space (see [Fol13, Chap 4.5]), then

| then [ f,(x)dx — [ f(x)dx.

Proof. Left as an exercise. Caution: pay attention to which
integral you are using, the L! integral for non-negative
functions or the L* integral. The first one allows subtrac-
tion under the integral sign, while the second one may
not. ]

Proposition 3.18 [Fol13, Ex 2.21, 6.10]

Let p € [1,00), fu, f € LP. Suppose f, — f a.e., then
Ifn=Fllp— Ot ll full p — 1 £l p-

Co(X) = complex-valued, continuous, vanishing functions on )aroof. The proof requires Prop. 3.17, and is left as an exer-

If we equip N* with the discrete topology (see [Fol13, Chap
4.1]), then ¢y = Co(N*) [Fol13, Ex 7.20]. The reason why we
say that conv. in meas. is a generalization of L* conver-
gence is because cy is the uniform closure of /y, and a lot
of the desirable properties of L* convergence such as i)
w(fn— f1 > ¢€) <oo, and pointwise a.e. convergence (albeit
by passing to a subseq.) are inherited.

Additional theorems relating the three types of conver-
gences: i) pw a.e., ii) in measure, iii) in norm are proven
in the remaining sections of this article.

3.14. Convergence of Integrals (given pw a.e.)

This section will answer the question of why we care about
pw a.e. convergence at all, since it is relatively weak com-
pared to the other types of convergences. Given f;,, — f pw
a.e., and a functional I : £E(M) — C, we want to know when
does I(f;) — I(f). The general case is out of the scope of
this document. We refer the reader to the remarks left at
the end of this section for references.

Specializing, let p € [1,00), and suppose f;, f € L and
fn — f pwa.e. We know that by Fatou’s lemma,

Jx | f (1P dx < liminf [y | f, (x)|P dx.

Natural questions to ask: i) When does || f;, — f l, — 02 ii)
How about || fxll, — I fl,? Proposition 3.18 shows that
these two things are equivalent. In other words,

the diff. of norms vanishes iff the norm of the diff
vanishes. (diff. = difference)
To prove this we need a small lemma.
Proposition 3.17 Generalized DCT, [Fol13, Ex 2.20]

Let fu, f,&n, f € L}, suppose that f, — f pw a.e, and
gn— gpwae.,

Ifal<gn and [g,(x)dx— [g(x)dx.

cise. Hint: use Eq. (41). ]

The Brezis-Leib lemma, which is a generalization of Fatou’s
lemma is used frequently in the calclulus of variations to
obtain estimates of functionals just from pw a.e. conver-
gence. As a special case of this, let p € (0,00), a sequence
of measurable functions f;, — f pointwise a.e., such that
limsup|l fyll» < oo for some p € (0,00), then

flf(x)l’”dx=lim(f Ifn(x)l”dx—f | fn(x) = f(x)IP dx|.
X X X

For more, refer to wikipedia, and Brezis-Leib 1983. [LLO01]
also has a discussion on this in the earlier chapters.

3.15. Convergence of Integrals (given in
meas.)

Now we discuss the situation where we only have conver-
gence in measure. The first result is rather elementary, be-
cause it does not assume that the sequence f,; has uni-
formly bounded L” norm nor that it is uniformly bounded.

Proposition 3.19

Let f, =20, and f;, — f in measure, then f =0 a.e., and
J f(x)dx <liminf [ f,(x)dx.

Proof. Let fi be a subsequence such that lim | fi(x)dx =
liminf [ f,,, (x) dx. Taking subseq. preserves conv. in mea-
sure, so we can take a further subsequence of fj (still la-
belled by fi) such that fy — f pointwise. Since f; = 0 a.e.,
we see that f = 0 a.e. as well. Using Fatou’s Lemma,

J f(x)dx = [liminf fi (x) dx < liminf [ fi.(x) dx
=liminf [ f,(x) dx.
]

If we assume that |f,| is controlled by some integrable
function, then we obtain much better results. The key trick
is to pass to subsequences. It is useful to remember that
([Fol13, Ex 4.30b]) the very overpowered criteria for check-
ing when a sequence converges.
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Let (x,) be a net in a topological space X. The
net (x,) — x € X iff for every cofinal B < A there
is a cofinal C < B such that (xy)yec — x. (Note
that every cofinal subset B € A induces a subnet
(xp) peB, see [Fol13, Ex 4.30a])

Proposition 3.20
Let p € [1,00), and f;; — f in measure, suppose that
| fnl < g € LP pointwise a.e., then

1. fel?, |fy— fllp,—0,and || full, — I fll .
2. If p=1,then [ f,(x)dx— [ f(x)dx

Proof. 1. We will use the subsequential criterion. Fix a
subsequence f,;. By choosing a further subsequence,
fne» we can assume that f,,, — f pointwise a.e. For ev-
ery k =, we have the uniform dominance

|fup = FIP <2P(IgIP +1f1P) e L. A1)

This proves that || f;;, — fllp — 0 as k — oo, and coinci-
dentially also proves || f, — fl, — 0 as n — oo. The argu-
ment for || f ||, — || fl p is similar, we just dominate:

|fn; |7 <1gIP € L.
2. Same subsequential technique. If f;; is a subsequence,

choose a further subseq such that f,,, — f a.e. we know
that from Part 1 that f € L!, and because

|fuel < gl LY,

by the dominated convergence theorem: [ f,, (x)dx —
J f(x) dx. This holds for every subsequence f;, j»and we
conclude [ f;,(x)dx — [ f(x)dx.

two general themes of convergence in measure

1. conv. in measure is preserved under taking subse-

quences.

conv. in measure implies conv. pointwise a.e for some

subseqgeuence

3. ifwe want to show that for some functional I(f;,) — I(f),
we can use the subnet convergence trick. Fix any sub-
seq. I(fy;), it suffices to show that there is a further
subseq. with I(f,,) — I1(f).

2

In choosing this further subseq. we can assume that
fun, — f pointwise a.e. If in addition the entire sequence
is uniformly dominated, then we can use DCT or GDCT.

4. to compute the liminf or limsup of a functional, we
can assume that the value is attained by a subsequence.
(which inherits conv. in measure).

3.16. Convergence in Measure for Bounded
Measures

The topology of conv. in meas. becomes completely metriz-
able if u(X) < co. In this case, it is customary to use the
metric

o(f g)=f (0 - )|

dex where f,gE S(X)

(42)
For proofs and more generalizations, see [Foll3, Ex. 2.32
4.56, 5.50, Thm 2.30]. We remark that p(X) < oo neces-
sary but not a sufficient condition. In the case that y is a
finitely-additive vector measure, there is a notion of inte-
gration and a formula similar to Eq. (42) that metrizes conv.
in meas., we refer the reader to [DS58, Chap 3].
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