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Indexing Sets
Let {]i}fil < N* be an ordered list of counting num-
bers, foreach i =1, ..., N, we write

N =11, ..., Jih
It is useful to also define

N l=m;<];, }
"i=1,...,N
)
Shown below is the disjoint union of the initial seg-
ments Nt (J;):

eN*U) = {om, ..., m e N

3jeN* (),
oN'(J)) = {(ml, womy) e NN, mjeN*T(J)),
Vk#j mp=0
2)
The symbol 1 will we used to denote the vector with
all ones, that is

Iv=(1,...,1) e (NHV.
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Vector Spaces
Let {R(;)}Y | and {R(I;)}Y, be finite dimensional vec-
tor spaces over R. For every i =1, ... ,N, the di-
mension of R(J;) is the number in the brackets, J;.
The basis elements of R(J;) are indexed by the symbol
a;=1,...,J;,and

o
{esiy 1=ai<uif

forms a basis of R(J;). Every vector x € R(J;) admits a
representation with respect to this basis with x4, (1 <
a; < J;) being the a;th coordinate of x so that

The dual space of R(J;) is denoted by R(J;)*, and the

dual basis associated with {2 }] i

RU) a;=118

1, * Jip = | _ ) i, * . .
{eR(]i)"”’eR(]i)} = {eR(Ji)’ l=a; 51’}'

The scalar product between R(J;) and R(J;)* is always
denoted by (-, )r(y,)*, r(J;), Where

Yi=«;

(e}’i
0 vyi#aj

) ¥ aj, * — s . ) —
mm’%@ﬁmm&mm-5wv“ﬂ-{
and is extended by linearity — since, as is well known
that linear mappings characterized by its values on a
basis.

Inner Product Spaces
If R(J;) is an inner product space, and x, y are ele-
ments of R(J;), the inner product between them is
(x, ¥)r(y;)- We assume all bases are orthonormal un-
less otherwise specified.

The Riesz map is of R(J;) is the mapping pr(, :
R(J;)* — R(J;) that associates every covector p €
R(J;)* to a vector u” € R(J;) where

(1 Orgy*, RO = W Orgy  YHERUD.

Operations on Vector Spaces
If R(J;) is the direct sum of a family of vector spaces
{R(J;, qi)}quizl, where Q; € N*, and each vector space
R(J;, g;) has dimension (J;, q;), we write

RUD) = & RUi, 40)-
We recall that 0
Ji= Y Ui q)-
qi=1

Linear Mappings
The space of linear mappings from R(J;) into R(I;) will
be denoted by L(R(J;); R(I;)), and we use the symbol
L(R(J))) to refer to LR(J;); RU;)).

1.1.1 Enumeration of Lists

We use the following notation to simplify computations
with multilinear maps. Let E and F be sets, elements
v1,..., Uk € E, and amapping f : E — F.

Individual elements
vk means vy,..., Uk as separate elements.

Creating a k-list
(U&) = (v1,..., V) € HEjsk ifv;eE;fori=k

Nested indices

.....

Empty Lists
(Ug) a, b) C) = (a’ b) C)

Skipping an index
(i1, Vigk—i) = (W1,..., Vi1, Viy1,..., V%) for i = k.
Note that we can find the size of any list by summing
over all the underlined terms and the number of sin-
gle terms.

Applying f to an element
Wi—1, f(0i), Visk=i) = (V1,..., Vi1, f(V1), Vis1,..n, VR
Of course, if i = 1, then the above expression reads
(f(v1), v2..., vx) by the 0 interpretation.

Mapping over lists
If A: ExE — F is any associative law we write

@(vk)zle-'-/\vk.

1.2. Linear Algebra

The definitions and properties which follow correspond to
[Roman2007Advanced].

A basis (of a vector space V) is a linearly-independent
spanning subset B < V. Two bases of V have the same
cardinality, and if V = {0}, then B = &. Every vector space
has a basis, and although we have yet to introduce them:
every Hilbert space has an orthonormal basis.

An ordered basis of a finite-dimensional vector space V is

{el 31 = (e}, ... ,el). The coordinate map is the isomor-
phism ¢, € L(V,C"), where

n . .
[X]ey = e, O x'e}) = (x},...,x") eC”,
1

we call [x]e, the coordinate representation of x in {e{,}’f.
If {si,}{l is another ordered basis of V, the transition map
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1. Introduction

from {e{/}f to {8;}? is the linear automorphism

Peyey €EGLINC),  Peyey = Pey 0Py

which takes [x],, to [x]¢, . For any fixed n = 1, the standard
basis of C" is {eén =(0,...,0,1,0,...,0)}}". Suppose C" has
standard basis {efcm}m, and if A € L(C",C™), its standard
matrix representation is the matrix

an o din aj

[Aley ey = where = (ngAe{,

Am1  *° Amn Amj
Visj<sn (3)

If V and W have ordered bases {e{,}", and {eév}i", and A€
L(V,W); the matrix representation of A with respect to ey
and ey is

[Aley.ew = Qe APorley,en-

More concretely, if [Ale, ¢,

. T
bers in Eq. (3), then [ay amj]" = @e,, Ael,. We sum-
marize the matrix representations discussed using fig. 1.

is given by the array of num-

Vﬂm"

%V\ l@v,ev
Cn

(a) Transition map from ey to ey .

V—Cc"

ey
\LA l[mev,sw

W —> "
e

(b) Matrix of A € L(V, W) with respect to bases ey and eyy.

Figure 1: Diagrams representing matrix representations.

1.3. Kernel and Range

If u; € LIR(J;); R(I;)), its kernel is Ker(u) = {x € R(J;), ux =
0}, and its range is Im(u) = {ux, x € R(J;)}, we remark that
both are subspaces (of R(J;) and R(!;) respectively).

On one hand, u; is an injection iff it has a trivial ker-
nel iff it admits a left inverse o € L(R([;); R(J;)) where
ou = idr(j;). On the other hand, u; is a surjection iff its
range is V iff it admits a right inverse o € L([R(I;); R(J;))
where u;o = idR(ji).

Injective linear maps are sometimes referred to as linear
embeddings. If u; is a bijection, then we say u; is a vector
space isomorphism, R(J;) and R(I;) are isomorphic and we

write R(J;) = R(I;). A linear endomorphism on R([;) is a
linear map u; € L(R(I;)), and u; is an automorphism on V
whenever it is invertible.

For any subspace R(J;, g;) < R(J;), the quotient space of
R(J;, g;) is defined as the set of cosets of R(J;, g;) and is
denoted by R(J;)/R(J;, g;). It is a vector space under ele-
mentwise addition and scalar multiplication. We recall

x+RU;, g) =y +RU;, qi) iff x-yeRU;, qi).

If u; € LR(J;); R(I;)), we can decompose R(J;) = Ker(u) @
R(J;, qi)R(Ji)’ and for some subspace R(I;, p;) < R(I;),
R(I;) =Im(u) ®R(I;, p;). The universal property of the quo-
tients states that R(J;)/ Ker(u) =~ Im(u).

1.4. Multilinear mappings

A mapping X : R(J1) x R(J,) — W into a vector space W is
bilinear if for every x; € R(J1), and x, € R(J>2),

X(x1,):R(J2) =W and X(,x2):R(U1) =W

are linear mappings on the indicated domains. Similarly,
amapping X : HIIV R(J;) — W is N-linear, or muiltilinear in
its arguments whenever

X(Xp-1, *» Xn+N-n) is N — 1 linear for all x; € R(J;),

1<is<N,i#n,andl1<n<N.

Analogous to the case where a linear mapping between two
vector spaces R(J;) and R([;) is determined by its action
. a; Ji . . .
on the basis vectors {ep T =1 @ multilinear mapping X is
characterized by its action on the following set of elements

a
{(eR(h)’

A common misconception is that multilinear maps can be
defined by specifying values on

anN . . .
ey ) 1=ai<Ji1<i=N). @

{0, . e 0,0, 1=ai<Ji, 1=i <N},

Take X(x,y) = eng'(’;l)eé’(’;z), then

2 _
and X(O,eR(h)) = 0, however

this is not true.
1 _

X(eg),0) = 0,
1 2 _

X(epqy,y rypy) = 1-

This is because the notion of multilinearity cannot be de-
scribed by any external direct sums of the vector spaces in-
volved, and to do so we must introduce the tensor product.

1.5. Notes and References

1. Undergraduate texts: [Joh21a; Joh21b; Lan12; Str93;
Ax197].
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2. Advanced undergraduate: [Hal12].

3. Graduate level texts: [Roman2007Advanced; Lan05;
Hun03]

4. Matrix Analysis: [H]90; HHJ94]

2. Metric Vector Spaces

2.1. Projection Mappings

We turn our attention to ways of 'factorizing’ linear map-
pings. Suppose V = S& T, a projection onto S is an operator
p where p(s+1) =sforall se Sand ¢ € T. It follows that
V =p(V)eKer(p), and x € Siff px = x.

Two projections p1, p2, with images Sy, Sy are orthogonal
whenever p1p, =0 = pyp;." A resolution of the identity on
V is a sum of projection operators {p,-}{c

k
Zpi =idy where p;p;j=0=p;jp;.
1

It can be shown that the images of the projections form a
direct sum decomposition of V, in symbols V = ea’f pi(V).
Conversely, if V = @f S;, the projections p; onto S; form a
resolution of the identity.

2.2. Eigenvalues and eigenvectors

An eigenvector for a linear mapping u € L(V, W) is a non-
zero element x € V where ux = Ax for some A € C; and 1 is
the eigenvalue associated to x. The eigenspace is the sub-
space of V containing all vectors x that satisfy the equation
ux = Ax.

An operator u € L(V) is said to be diagonalizable if there
exists a spectral resolution of its eigenvalue:

k
u=Y Aipe, where {A;}¥are distinct eigenvalues of u,
1

and {pgi}lf are mutually orthogonal projections onto sub-
spaces of V.

2.3. Inner Product Spaces

Geometry is the most potent on inner product spaces,
which are vector spaces equipped with an inner product.
A scalar-valued function w: V x V. — [F where F =R or C is
an inner product if it is

lequivalently: S, < Ker(p1) and S; < Ker(po.

positive definite
w(x,x) =0 for all x, and {0} = {x, w(x, x) = 0}.

sesquilinear
if F = C, then w is linear (resp. conjugate-linear) in its
first (resp. second) coordinate.

symmetric
if F =R, then w is a symmetric bilinear form.

We assume for the rest of this section that all vector spaces
are finite-dimensional inner product spaces and we use
(-, v in favour of w. If U is another inner product space,
and u € L(V,W). We say u is an isometry if it relates the
inner product on V to that on U, this means for all x, y € U,
(ux, uy)y = (x, y)y; and if this is the case, u is an isometric
isomorphism if it is also a vector space isomorphism.

Every inner product space is normed, with x — |lx|| =
V{x, xyy for all x € V. Finally, a Hilbert space is an inner
product space that is Cauchy-complete with respect to its
norm topology.

Two vectors x,y € V are orthogonal to each other, written
x L y whenever (x, y)y = 0. If E € V is any subset, its
orthogonal complementis E- = {xe V, x LyVye V}.

If V is an inner product space, and S < V is a subset, it is
orthogonal whenever x L yforall x # yin S. If | x|| = 1 for
all x, it is orthonormal.

For a given subspace S < V, its linear complement T can
be chosen such that V=S& T,and S L T. 2

A projection p is orthogonal whenever Ker(p) L p(V), not
to be confused with two (mutually) orthogonal projec-
tions. A resolution of the identity is orthogonal whenever
each projection p; involved is orthogonal.

The Hilbert space adjoint of u is instead denoted by u* €
L(W, V), which is the unique linear mapping that satisfies

(ux, y)v =(x, u* y)y.
We note that u** = u, and u is a surjection (resp. an injec-
tion) iff u* is an injection (resp. a surjection). The matrix

representation of the Hilbert space adjoint is the Hermi-
tian transpose’ of the matrix representation.

We mention several important classes of operators.

2If V is infinite-dimensional, assume that S is closed.
3also called the conjugate transpose
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Unitary
A unitary operator u € L(V) is an isometric isomor-
phism on V. Equivalent characterizations: u* u =idy,
columns (resp. rows) of any matrix representation of
u form orthonormal basis in C”.

Normal
A normal operator u; € L(R(J;)) is an operator that
commutes with its adjoint: u*u = uu*. Equiva-
lent characterization: u can be unitarily diagonalized,
that is: there exists orthogonal eigenspaces {Ei}{C cor-
responding to the eigenvalues {/15}{“, such that u =

Yidipe,

V=e¢, EiJ_gjifi;ﬁj.

Note that unitarily diagonalizability is the same as
saying there exists an orthonormal basis {e;}? where
[u]p,p = diag(Ay,..., Ag).

Self-adjoint
An operator u is self-adjoint whenever u* = u. Some
refer to self-adjoint operators as Hermitian when the
base field is C or symmetric if the base field is R.

If u* = —u, it is said to be skew self-adjoint (resp. skew
Hermitian, and skew-symmetric if the base field is R.)

Positive (semi-)definite
A self-adjoint operator u is positive semi-definite if
Qu(x) =(ux, x)y = 0for all x € V, it is positive definite
whenever Ker(Q,,) = {0}.

Equivalently, u is positive semi-definite iff all of its
eigenvalues are non-negative, and positive definite iff
all of its eigenvalues are strictly positive.

If u e L(V,W), then Ker(u*) = Im(U)1, and u*(V) =
Ker(u)*. It is clear that u is unitary (resp. normal, positive
semi-definite, positive definite) iff u* is.

2.4. Grammian and its applications

The Grammian [AMO6] of a linear mapping u € L(V, W)
is the operator u*u € L(U). Properties of the Gram-
mian include: Ker(u*u) = Ker(u), Ker(uu*) = Ker(u*)
and also u*ImU) = ImU), uu*(V) = u*(V), see
[Roman2007Advanced]. A special case worth mentioning
is when u is an embedding, then Ker(u* u) = {0}, whence
the Grammian is unitary on U.

If u € L(V, W) is arbitrary, we can decompose U = Im(u*)
Ker(u), and V = Im(u) ® Ker(#*). The Grammian u*u is

positive semi-definite, and can be unitarily diagonalized
by basis {b j}{‘. By reordering b, we can assume that

. 2 2 2 2
[u* ulpp = diag(oy,...,0%,0,...,0), o7=--=0%>0.

The numbers {c;}] are the singular values of u.

Matrix Norms

We turn our attention to m x n complex matrices, which
we will denote by M, ,. Let A € M, , with entries as in
Eq. (3). If p € (0, +00], the entrywise [P norm of Ais

/p
TijlailP)!
||A||p={( 1))

max; j|a;;l

0<p<+oo
p=+oo

* The Frobenius norm of A is the entrywise 2-norm of A, is
usually denoted by || A|| r instead of || All2,

IAlF=)l0i(A) > is the sum of the squares of the singular values of
i

The operator norm on A is || Allop = Sup|y<1 1Al with ||
norms induced by the inner products on C", and C™”. The
spectral norm coincides with the 2-norm, the former de-
fined by

| Allspec = a1(A) = | Allop,

where 0 (A) is the largest singular value of A. One also has
the estimate
I Allop = I Allg.

3. Tensors

This section follows [Gre67, Chp 1-3] closely, and summa-
rizes the definitions and theorems that we will need for the
discussions that follow. We will shy away from defining,
proving, or discussing the notions of universality that is
prevalent in category theory [Riel7; Lan05] and the gen-
eralization to tensor products of modules and algebras
[Lan05], nor will we discuss its implications in differential
geometry [Lee2013Introduction; Lee2019Introduction].

3.1. Tensor Product

The tensor product of the vector spaces {R(J;), i =1, ... , N}
is any pair of the form (7, &) such that 7 is a real vector
space and ) is a N-linear map

N
®HR(]I)_>(I) ®(x1""’xN)=x1®"‘XN.
1

The mapping Q) is required to satisfy the universal property
of multilinearity (see fig. 2 also):

4we note that the [° norm is sometimes used to refer to the number of

non-zero entries of A.
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MYRU) —25 T
=
X
w
Figure 2: Universal Property of Multilinearity

If X : [IVRU;) — W is any multilinear map
from Y, there exists a unique linear map Xy €
L(T; W) such that

Xoo) = X.

Several points that are worth mentioning.

Not Unique
The tensor product is not unique, it is defined up to
a linear isomorphism. Any pair that satisfies the two
properties is called a tensor product of {R(J, i)}{v .

What does T do?
Roughly speaking, T is the vector space designed to
capture the valuations of multilinear mappings (it is
also the leanest possible vector space — thus giving
rise to the 'unique’ descent of a multilinear map into
alinear one [Gre67]), similar to how a multilinear map
is characterized by its values on the set given in Eq. (4).

What does @ do?
The mapping @ allows one to factor out the multi-
linearity of N-linear X. The universal property also
gives a bijective correspondence between multilin-
ear mappings out of ]'[{V and linear mappings out of
T, while preserving the multilinear structure of the
mappings involved.

Existence
The tensor product of any finite family of vector
spaces always exists, we will not pursue the proof of
this here. The reader is encouraged to consult the
proofusing free vector spaces [Roman2007Advanced;
Lee2013Introduction; Lee2019Introduction; Lan05;
Gre67].

We will use (®f’ R(J;), ®) to denote the tensor product of
{R( ],')}Ilv , and we may omit the factorization mapping @
when it is understood. Since every multilinear map gives
rise to a unique linear map on ®11V R(J;), we identify Xg = X.

Multilinear mappings from Hiv R(J;) are here-
inafter identified as linear maps from ®{V R(J7).

If (x1, ... ,xn) € [IVRU,) it is customary to write @ x; =
&X(x1, ..., xy) as an element in ®11V[R(]i).

We conclude this section with a list of elementary proper-
ties of the tensor product. These properties are proven in
[Roman2007Advanced; Gre67].

Commutative
If o is a permutation on {1, ... , N}, then ®11VR(]U(1'))
and ®11V R(J;) are linearly isomorphic as vector spaces.
Because of this, we sometimes write

®(xl) rxN) =X1®: - QXN.
Associative
For the case of N =3, (R(J1) ® R(J2)) ® R(J3) is linearly
isomorphic to R(J1) ® (R(J2) ® R(J3)), which is linearly
isomorphic to ®R(J;).

Tensor Product of Base Field
For every N, the N-fold tensor product of the base
field N isomorphic to the base field ®{V R=R.

Tensor Product of Dual Spaces
The tensor product of the dual spaces is the dual space
of the tensor product:

[eNRUN]" = eNRUY*.

Basis of the Tensor Product
The mapping & of the set in Eq. (4) forms a basis of
o VR(J).

@ — p%1 cee anN N + . .
{e®{VR(Ji)‘eR(11>® wesy pacel N UL )

An element x € ®{VR(]i) can be expressed as a sum

pa— oo al DY aN
X = Z Z Xay,...an Ry ® " ® Cryy)
1sai1</1  l<an<Jy
a
= Xg€ ) 6
NZ T eNR(J;) ©
ae®;  N*(J;)

where x, € R corresponds to the coefficient of e[g(i -

When we discuss linear mappings between vector
spaces (and tensor products), we will often use the
symbols I and S.

The tensor product ®11V R(I;) has basis

B _ b e WPN N n+(T.
{e®{VR(li) =Ry ® " ® Ry peeiN (I’)}'
Tensor Product is not a Direct Sum

For simplicity we restrict ou r study to the tensor prod-

uct R(J1) ® R(J>). The observation that & is bilinear

leads us to
x190+0Q® x»

does notequal x; ® x,

Updated 2024-11-14 at 17:24
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unless x; =0 or x; =0, and

Mmx1®y+axx;®y=(a1x1+a1x))®y,
forall a;, a; € R, x1, x} € R(J1); similarly for the second
coordinate.

Dimension of the Tensor Product
The dimension of the tensor product ®11V R(J;) is the
product of the dimensions HIIV Ji. The same is not
true for external direct sums.

In fact, ]'[ZIV R(J;) has dimension Z{V Ji, this is the prin-
cipal reason why the external direct sum always fail to
capture multilinearity when N =2 and J; = 2.

3.2. Direct Sums (Optional)

Direct Sums (highly related to Tracy Singh decomposi-
tion), indexing conventions, and matrix unfoldings. Idea
is that block matrices factorize a linear map into smaller
linear maps that operate between subspaces which sum
(directly) to the original space.

Suppose foreach i =1, ... , N, the direct sums

RU)=e)_|RU;,q) and RU) =, R(;,p), (7)

where each of the subspaces R(J;, g;) (resp. R(I;, p;) have
dimension q; (rtesp. p;), and J; = Zgiizlﬁi (resp. I; =
Zi;zlﬁi. Then,

elRUD =0l -+ o o RU;, 1)
OV R() =@, _ - &) _ @ 'R(L;, pi)

Proposition 3.1 Direct Sums of Tensor Products

If R(J;) is given by Eq. (7), there exists a linear isomor-
phism such that

eYRU) =8N, 82 [RU;, q1)] = ® ol ®ie1RUi, d1)
See [Gre67, chp 1.9-1.12] for the proof.

For each R(J;), we can enumerate its basis vectors in a
manner that respects the direct sum structure.

Dimension
P;
dimR(J;, p))=U;; qi)) and Y U5 pi) = Ji.
pi=1

Restricted / Projected Maps
We want a good way of unfolding the subspaces, fix

(I;, g;) and (J;, pi), referring to the (B;, g;)th (resp.
(a;, pi)th) basis vector in the subspace (I;, g;) (resp.
(Ji, pi))) of R(I;) (resp. R(J;)).

qi-1
> Ui wi) +(Bi, i)

wi= 1
Lexicographical ordering

[ 0= 1R(]1’QI)] [ gn= 1[R(]NrLIN)]

Tracy-Singh Ordering

(T
@lh=1

o2, [RUL, q1) ®-+- O RUN, GN)]

Definition 3.2 Tracy Singh Product

Also called partitioned Kronecker product, block Kro-
necker product, generalized Rao product.

[TJ89] contains proofs of various properties, of the
partitioned Kronecker product. It goes over a special
case that is of interest in statistics: the balanced par-
titioned product. This is when q; =p; =7; =;, and
provides transformation formulas.

[Liu99] contain properties for when the A and B are
matrices, where
_[An A Bi1 B
Ay Ap By1 Bx|’
The matrices in the form of Eq. (8) is of particular in-
terest, because of SVD.

8

and B:[

The lexicographical ordering (or dictionary ordering) of ba-
sis vectors [Tuc66, pp.281] in ®{V[R(]i) is the correspon-
dence between

N
s and {eled  1=ai<si1<i=nN},
1

such that indices a; corresponding to a larger i value
(closer to N) take precedence during enumeration from 1
o[V Ji. lfa=(ay, ... ,an) €& N*(Jp),

ct+(an-1-DIvt+an

N N
aE(a1—1)H]i+(6¥2—l)H]i+
3

I}
Mz

-1 1"[ Jj. 9)

j=i+l

Il
—_

Given an integer a € [1, ]'[JIV Ji1, we can find its correspond-
ingae ®f.\i1l\|+(]i) by taking the inverse of Eq. (9). An ex-
plicit construction of this inverse is found in ?2.
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3.3. Linear Maps as Tensors
Given R(J;) and R(I;) and their bases

B _ B . }
{e@zN[Ri(Il =Ry ® ®e[R%(I )’:6€®z (N7 )

= 1 cee aN N + .
{e®{\’R(],-)_eR(h)® @egy pacel N'UD}  (10)
the tensor product (cf. Eq. (5)) induces a basis of R(I;) ®
RUD*
lef ool 1<pi<l1<ai<J;} (11
R(I) R(])’ =Ml =+ - rL=JI(-

The space L(R(J;); R(I;)) is naturally isomorphic to R(I;) ®
R(J;)*. To see this, fixi =1, ..., N, and we define the map
T:RUIH)®RUJ)N™ — LIRUJ); RU;)),

by specifying its action on basis vectors of R(I;) ® R(J;)*:

TR ® Yag,) X = Yran Yrgyy OrOp* ROD-  (12)
If yrry) ® yu’i(]i) € Ker(7), then either yp(r,)

=0or yu’i(],), and
1
in both cases yg(s;) ® y"’g(]‘) =0®0=0.
1

Conversely, given u; € L(R(J;); R([;)), we claim that the
numbers

{ui(ﬁir a)eR, 1sa;<];, 1=p; Sli}

obtained through the scalar product of R(I;) with its dual
R(I;)* completely characterizes u;:

- , <a;<]J;
ui(Bi, i) = (egiyy wileg Vmuy g og - (13)
Fix u; e R(I;)* ® R(J;) with
wp= ), wilBi, ai)e) ®eg ). (14)
1=p;<I;,
1=a;<];

Forany x; = Y1<a;<; X €g(;) € RUD,

Twx)= )
l<a;<]J;,
1=Bi<I;

1=a;<J;,
1=Bi<I;

a;, * Bi
ui(Bi, “ixemfm' Xi)RU)*, RUN) €R(1;)

- ﬁ

1=a;<J;, 1=y;<];
lSﬁiSIi

l<a;<]J;,
lSﬁiSIi

ul(ﬁlr a; )xalegzl) (]-5)

Which proves that T(u}) = u;, and we identify u with its
image under J (and conversely)

Adjoint Mapping in Coordinates

Ifi=1, ... ,N, the adjoint map u;‘ € LIR(I)*; RUJN™) has
coordinate representation

u (al)ﬁ ) - <eR(I), [g(l]l))hR(I,)*, R(I,) = ul(ﬁl! al)

Vi<sa;<J;, 1=B;<1I.

Scalar Product on Linear Endomorphisms

Composition Algebra. Because R(J;) and R(J;)* are in du-
ality, and since

RU)®RJD" =RU)D" ®RU)),

we consider R(J;) ®R(J;)* to be in self-duality, and its scalar
product exhibits a certain cross-multiplication structure:

* *
(YRUD ® VR(7)» XRUY) ® XR(7,) RUSRU)*®

= (Vg MRUDIRUD®, RUD KRGy YRUDIRUD®, RU)-

3.4. Tensor Product of Linear Mappings

Let u; be linear mappings given as in Eq. (16)
for i = 1, ,N, we define its tensor prod-
uct [Roman2007Advanced; Lee2013Introduction;
Lee2019Introduction; Gre67, Chp 14, Chp 1-3, Chp 12,
App. D] as the map

U:oVR(J) — oVR(I), wewrite U=eoNu;,
by specifying its values on the basis of ®N[R(]i):

Ue®y. ) =8Nu;(e a7

eNR(J;) RU))

We remark that Equation (17) implies

U@Yx)=eYu;(x;), Yx;eR(U;), 1<i<N.

Since U is an element in L(®VR(J;); ® VR(I)) = @VR(J;) ®
®{V R(I;)* and thus admits a basis expansion in the form of
Eq. (16) —which we will now compute. If y = (yy, ... ,YN) €
o N (),

— * Yi
Ute ®NR(])) - ® Y, il ai )eR(1)<eR(])’ %Ry RUD"
i i . Nl<a;<J;,
1<ﬂl<11

QX X
=1, ..,N1=<a;<J;,
1=g;<I;

X X wp, w)e@;’,i,

=1, .. ,N1<B;<I;

Yoo 3wt ®
O N

1=p1< 1=sBn=<Iyi=1, i=1,

= Z Z H ui(ﬁi,%)eﬁ

u; (Bi, ai)e[g;’,i,g(ai, Yi)

ui= ), wilBi ale] ®ej ). (16) 1<pri<h  1=pn<Iyi=l, ..,N o1RUD
1<pBi=<I;,
15"‘251‘5]1' (18)
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Applying the dual vector e;’:,m[ , where v = (vy, ...
1 i

3 ’ VN) €
o \N*(I;) to Eq. (18) yields

Ulv,)=U(vy, ...,YnN), (Y1, ... YN))
j— V)*
_<e®{VR(IiJ Ute @NR(J)»@{VRUL‘)*'@%VR(H)

= <e;{3 Rty D I1

peel N*(I1)i=1...N

- T

peeN \N*(I)) i=1, ... .N

= Z H ui(Bi, vi)
Pee l\i +(1;) =L, ... ,N i=1,

= Z H u;(Bi, Yz) H 6(Vly Bi)
Pee 1\i [l)l 1,..,N

= [T w® Yi)g(%ﬁ)
peaN N*(;) i=1, .. ,N
ui(vi, vi) 19)

This leads us to write

U= > I

1<ai<], l<an=<Jn,i=1,
1<spi<h 1<Bn=<INn

- Y U, a)eﬁ’N* ®e%y .
R(I; @' RUJ;)
(l€®N N+(],) ®] (I;) 1 i
ﬁe@N N*(I;)

ul(ﬁ,, a; )e ® e”

®N[R(I,) eNR(J;)

(20)

Next, suppose we are given x € ®{V R(J;) as in Eq. (6), we
compute U(x) in explicitly using Eq. (19)

U=U| T o T ey,
l=sa1</;7 l=sanys<Jn i
- Z Z U, a)xae N[R(I)®e®N[R(],)
ace N*(JpeolN N*(I;)
= Y Up @ N[R{(I)®e NR())' @D

acolN N (Jp),
ﬁe@N N* (1)

Basis of L(8)R(J;); ®NR(I)))
The space L(®VR(J;); ®VR(I})) is spanned by ele-
ments

lolus, ure LOU; RUN), 1=i <N},

The same does not hold in infinite dimensions

[Gre67].
Products of Functionals
If we take R(J;) =R foralli =1, ... ,N, and y; €
LIRU;);R) =RU)*,
lJ'i = Z ,ul (a )eR(]) (22)

l=a;<];

(B veP
ul(,Bz; Yl)e®ivR(1i)>®jlle(I[)*, ®]1VR(I,')
B
H wi(Pir i) < CaNay’ CapRuy @ RUD",

H <eR(1)*’eR(I)>R(L)* RUR(x1,...,Xp) =

Previous calculations (cf. Egs. (16) and (19)) show that
the tensor product of z = ®{V Ui is given by

ﬁ: Z l_[ I"Ll(a )e®NR(])

aeolN N* () i=L, .. ,N

- ¥

aeedN N*(J;)

wa), (23)

where fi(@) = [1;=), .. v pi(a;) for all a € o N*(J)).
® Nu;[ 51? tensor product ,u is identified with the N-linear
function: w:li=1, . NRU;) — R, with

i=1,

3.5. Multilinear Functions

Let Y € ®]1V R(J;)*, the space of N-linear functions de-
fined on [];=;, . ,nyR(J;) and identified as an element in
L(®{VR(]i); R) = ®11V[R€(]l-)*. The latter has basis

a, * ag, * ayn, * +
{e®{VR<I) et @ @t acol N (],)} ©24)
The set of numbers {Y(Y)}meill\l*(h) define Y, where
=) Y(Y)eeaNR(] ) 23

yeeN N*(J;)

Suppose x € ® VR(J;) is given by Eq. (6), then Y (x) has the
following satisfying formula:

Y= ),

yeeN N*(J;)

Y(y)xy

This forms a scalar product between ®{V R(J;) and
eNR(J;)*, since ®VR(I)* = VR(I))* =R(I)* ®---®R(In)*
[Gre67, Chp 1], we have the scalar product

1, N, *
Y7 @ ey, X1 @ XN)gNR(L)*, & VR(I))

= ] G xdrays, ray VYU T ERUINT, xi €RUY),
i=1,..,N
Vi=1,...,N. (26)
Now, let Y € @VRU)*, and U = &My €
L(®f’[R{(],-); ®{V[R(Ii)) where each u; is as in Eq. (16). Sup-
pose that
Y= ) Y(y)e@NR(I) 27

yeoN N*(I))

We compute the adjoint U*Y € ®]1V[R2(],-)* in coordi-
nates. For any a € ®§\LIN+(L~) we compute U*Y(a) =
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* a .
U™ Y (€yg,)

* _ a
U Y(a) =Y, Uw@{VR(J,-)))@i"R(Ii)*,®{VR(I,-)

=Y, >

peaoN N* (1)

= 2 Py

y€® N*(I,)ﬁ(—:@ N*(],)

yeoN N* (1)),
peeN N*(J;)

yeelN N*(I),
peeN N*(J;)
yeoN N* (1)),
peel N*(J;)

B
U, @€ g o, of'Rily

Ymu, a)<e®N[R(1,)’ egNRu))@NR(I,)* oVR(I;)
Y(U(B, a) H 6(%;6)

YWUPB, a8y, = Y.

yeoN N*(I)

YUy, a)

(28)
From Eqg. (28), we can read off the coefficient (U* Y)(a)

U'V@= )

yeelN N*(I)

YUy, a), (29)

and the N-linear mapping U*Y € ®11V|R2(I,-)* can be written

uy= )
yeelN \N*(I),
acel N*(J;)

YUy, a)e”; (30)

®NRU )

It is fruitful to also consider U* € L(®{VR(Ii)*; ®iVR(]i)*)
and its coordinate representation with respect to the basis:

{e“' * gel

N n+oT. N n*+ (7Ll 5
oVR(J;) ®’1VR(Ii)'a€®i=1N Vi), vy € @i N (I’)}'

We claim that (8 u}) = (@) u;)* = U* and

U, )= [] u(ai, i)
i=1,..,N
According to Eq. (19), for any € ®§\i1l\l+(1i),
U (e®NR(Il)) - NZ v, @
ae®; N*(J;)

= > I

ace N*(Jj) =L, .. ,N

Y I

aceN N* ()=l .. ,N

)

u;i(B;, a;)

ul* (ai’ ﬁl)

=@y )(e@»NR(I,)

Uy eVRUy
vector space with its bidual, since all vector spaces under consideration
are of finite dimension [Brezis2010Functional].

5Note that e;’z\fﬂg under the canonical identification of a
1

3.6. Matrization

Ifpi=Y1<a,<y, ui(ai)eu‘;f;} ) is an element in R(J;)*, its Riesz

vector is the unique vector in R(J;) that satisfies
Vxi € RU).

_ A
(ki Xi)meye, mep = Wi XidRUD

Ym 6®NR(I U, “)3®NR(I VeNR()", Bfil(basm {ery, )}]ii:1 is assumed to be orthonormal, if x; =

ehiyy foryi eN*U), then

Vi _ _ Yi _
(His eqy,RUD* RUD = Hi(Yi) = (17 ey DRUD = 1y,
This transforms a dual vector, or covector into a vector in
R(J;). Similarly, given a covector Y € ®{V R(J;)* is given asin
Eq. (25), we define the substitution operator that holds all

but one coordinate fixed in Y. For an arbitrary j =1, ... ,N,

87| @, RUY

i#]

x [8NRUN*| = RU*

Ifx;eR(J;) fori=1,...,N,

<‘S;‘ (®]L X, ), xj> =(Y, ®]1in>®{VR(Ji)*, ®VRU)) *
i#] RUD*, RU))
(€29)
*Y = S}“ -, Ve L(®§\i1‘R(]l~); R(J;)*), we can com-
i#j
pute its using Eq. (31). To wit,]let us agree to use A to index
the basis vectors of ®§\il,[ﬂz(],-), where

Using Sj

i#]
A _ oN +
{ehy agy =i eby Aeol N'UD}  (32)
=1, i#] i#]

i#]

forms a basis of ®§\i1 R(J;); and aj € N*(J;) to enumerate
i#j
the basis vectors of R(J;). Suppose that

Ai
®z 1LeRU) |-
i#]

Sj*Y: Z

i Y(a],/l)[eR(” ®
Aeel | N*()),

i#]
ISleS]j
(33)
Letle@ﬁl N*(J;) and aj € N*(J;), we see that
i#]
:< @ 1%(1))’ uw)>
i#] RUD*, RU))
i—1 A; aj N i
= Y,[@’ et ]@ I 1e|el e >
< 1 %rup|©[%RU)p J1RUD |/ gNgys+, oNR()
=Y((Ajo1, @, Ajan-y)). (34)
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It is convenient to rewrite Equation (34) using less clumsy
notation: °

Sj*y(dj,/l)ZY(aj_l/l) where CZjJ/lZ(/lj;l, aj,/lj.;.ﬂ).

We define the matrization of a tensor Y € ®f’ R(J;)* at the
jindex (j =1, ..., N) as the linear map

Y : @, RUD) —RU;)
i#j
that post-composes Sj*Y by the Riesz map of R(J;). Ac-

cording to Equations (31) and (34), it has coordinate repre-
sentation

o ) a; N Aj,*
Yp= ) Yl euqe(]j)]® ®=1,€R(,)
Aeo | RU), i#]

i#j
15(11'5]]'

3.7. Notes and References

In general, the Tracy-Singh ordering prescribes a natural
ordering to subsets, suppose {(A;, < i)}ﬁ\i | is a collection of
linearly ordered subsets, and A; = |_|j}4:"1 A(i, j). The usual
way of ordering the disjoint union A = Uf.\i 1 Ai is to write
x,yeA;jandx<;y or

xSyEA@{

X€A; yEA; lsi<jsN.

Alternatively, we can prescribe an ordering to A that pre-
serves the subset structure.

X<yeA = {x,-syi

The substitution operator 8; for j =1, ..., N is bilinear in
its two arguments, and descends into a linear map also de-
noted by 8

o, R(J;)
i#]

SjeL( ® [eVRUD*]; R(]i)*)-

For the case of vector spaces over C, it is customary to
suppress the complex conjugate of the Riesz map, so that
matrization is a linear correspondence from ®11V C(J)* into
L(®§\i1 C(Jy); €CUJj)). We also have the following relation-
i#j
ship between the Riesz adjoint and the tensor product.
Let {R(],')}Ilv be inner product spaces, then the

tensor product of the Riesz map is the Riesz map
of the tensor product.

6In other words, the functional induced by Y with A held fixed has co-
ordinates that are equal to the coordinates of Y with A held fixed.

We give an example of the border rank of a tensor, but
first an equation for writing the kernel of a tensor. Let
@: H{V R(J;) — W be multilinear, then

e —p@) = Y oL A, a' =),
i=N

(35)

for all (&), (HY) € HIIV[R(]i), and A’ = bl —af for i =
1, ...,N.

Proof. We proceed by induction, and Eq. (35) follows by
setting m = k in

o) = p(b™, a™ =) = 3 (b A a T (36)

i=m

Base case: set m = 1, by definition of k-linearity (?2) of ¢.
Since a' = b — Ay,

pa¥) = pb' — A}, a' TN

= @b, a1 — (A, @' TN,
Suppose Eq. (36) holds for m, since a™*! = b1 — A4,

p(a™)
= (b™, a" =) — 3 (b= A a

i=m
:(p(bﬂ, am+1’a(m+1)+N—(m+1))_ Z (p(bi_l,Ai,aHNf_i)

i=m

— (p(l m+1'a(m+1)+k—(m+1))
_(p(bm+l’Am+1’a(m+l)+N—(m+1))

i=m

and this proves Eq. (35). |
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