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Abstract

1. Introduction

We assume the reader is familiar with the notion of a vector
space, linear mappings in between them, nonetheless, this
section serves to condense a handful of elementary results
from linear algebra [Roman2007Advanced; Gre12; Gre67;
Lan05; Hal12]. We also restrict ourselves to the fields R or
C.

1.1. Notation

Sets N= {0,1,2, . . .} is the set of natural numbers (in-
cluding 0),

N+ = {1,2, . . .} is the set of counting numbers,

Z= {0,−1,+1, . . .} is the set of integers,

R is the set real numbers,

C is the set of complex numbers.

Indexing Sets
Let {Ji }N

i=1 ⊆ N+ be an ordered list of counting num-
bers, for each i = 1, . . . , N , we write

N+(Ji ) = {1, . . . , Ji }.

It is useful to also define

⊗N
1 N+(Ji ) =

{
(m1, . . . ,mn) ∈ (N+)N ,

1 ≤ mi ≤ Ji ,
i = 1, . . . , N

}
.

(1)
Shown below is the disjoint union of the initial seg-
ments N+(Ji ):

⊕N
1 N+(Ji ) =

{
(m1, . . . ,mN ) ∈ (N)N ,

∃ j ∈N+(N ),
m j ∈N+(J j ),
∀k 6= j , mk = 0

}
.

(2)
The symbol 1N will we used to denote the vector with
all ones, that is

1N = (1, . . . ,1) ∈ (N+)N .

1



Multilinear Algebra 1. Introduction

Vector Spaces
Let {R(Ji )}N

i=1 and {R(Ii )}N
i=1 be finite dimensional vec-

tor spaces over R. For every i = 1, . . . , N , the di-
mension of R(Ji ) is the number in the brackets, Ji .
The basis elements of R(Ji ) are indexed by the symbol
αi = 1, . . . , Ji , and{

eαi
R(Ji ), 1 ≤αi ≤ Ji

}
forms a basis of R(Ji ). Every vector x ∈ R(Ji ) admits a
representation with respect to this basis with xαi (1 ≤
αi ≤ Ji ) being the αi th coordinate of x so that

x = ∑
1≤αi≤Ji

xαi eαi
R(Ji ).

The dual space of R(Ji ) is denoted by R(Ji )∗, and the
dual basis associated with {eαi

R(Ji )}
Ji
αi=1 is{

e1, ∗
R(Ji ), . . . ,e Ji , ∗

R(Ji )

}
=

{
eαi , ∗
R(Ji ) , 1 ≤αi ≤ Ji

}
.

The scalar product between R(Ji ) and R(Ji )∗ is always
denoted by 〈·, ·〉R(Ji )∗, R(Ji ), where

〈eγi , ∗
R(Ji ), eαi , ∗

R(Ji ) 〉R(Ji )∗, R(Ji ) = δ(γi , αi ) =
{

1 γi =αi

0 γi 6=αi ,

and is extended by linearity — since, as is well known
that linear mappings characterized by its values on a
basis.

Inner Product Spaces
If R(Ji ) is an inner product space, and x, y are ele-
ments of R(Ji ), the inner product between them is
〈x, y〉R(Ji ). We assume all bases are orthonormal un-
less otherwise specified.

The Riesz map is of R(Ji ) is the mapping ℘R(Ji ) :
R(Ji )∗ → R(Ji ) that associates every covector µ ∈
R(Ji )∗ to a vector µ∧ ∈R(Ji ) where

〈µ, x〉R(Ji )∗, R(Ji ) = 〈µ∧, x〉R(Ji ) ∀µ ∈R(Ji )∗.

Operations on Vector Spaces
If R(Ji ) is the direct sum of a family of vector spaces
{R(Ji , qi )}Qi

qi=1, where Qi ∈ N+, and each vector space
R(Ji , qi ) has dimension (Ji , qi ), we write

R(Ji ) =⊕Qi
qi=1R(Ji , qi ).

We recall that

Ji =
Qi∑

qi=1
(Ji , qi ).

Linear Mappings
The space of linear mappings from R(Ji ) into R(Ii ) will
be denoted by L(R(Ji ); R(Ii )), and we use the symbol
L(R(Ji )) to refer to L(R(Ji ); R(Ji )).

1.1.1 Enumeration of Lists

We use the following notation to simplify computations
with multilinear maps. Let E and F be sets, elements
v1, . . . , vk ∈ E , and a mapping f : E → F .

Individual elements
vk means v1, . . . , vk as separate elements.

Creating a k-list
(vk ) = (v1, . . . , vk ) ∈∏

E j≤k if vi ∈ Ei for i = k.

Nested indices
(vnk ) = (vnk ) = (vn1 , . . . , vnk ), and (vnk ) 6= (vn(1,...,k)).

Closest bracket
(v(nk )) = (v(n1,...,nk )) and (vn(k))) = (vn(1,...,k) ).

Empty Lists
(v0, a,b,c) = (a,b,c)

Skipping an index
(vi−1, vi+k−i ) = (v1, . . . , vi−1, vi+1, . . . , vk ) for i = k.
Note that we can find the size of any list by summing
over all the underlined terms and the number of sin-
gle terms.

Applying f to an element
(vi−1, f (vi ), vi+k−i ) = (v1, . . . , vi−1, f (vi ), vi+1, . . . , vk ).
Of course, if i = 1, then the above expression reads
( f (v1), v2 . . . , vk ) by the 0 interpretation.

Mapping over lists
If ∧ : E × E → F is any associative law we write

©∧ (vk ) = v1 ∧·· ·∧ vk .

1.2. Linear Algebra

The definitions and properties which follow correspond to
[Roman2007Advanced].

A basis (of a vector space V ) is a linearly-independent
spanning subset B ⊆ V . Two bases of V have the same
cardinality, and if V = {0}, then B =∅. Every vector space
has a basis, and although we have yet to introduce them:
every Hilbert space has an orthonormal basis.

An ordered basis of a finite-dimensional vector space V is
{e i

V }n
1 = (e1

V , . . . ,en
V ). The coordinate map is the isomor-

phism φeV ∈ L(V ,Cn), where

[x]eV =φeV (
n∑
1

xi e i
V ) = (x1, . . . , xn) ∈Cn ,

we call [x]eV the coordinate representation of x in {e i
V }n

1 .

If {εi
V }n

1 is another ordered basis of V , the transition map
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from {e i
V }n

1 to {εi
V }n

1 is the linear automorphism

φeV ,εV ∈GL(n,C), φeV ,εV =φεV ◦φ−1
eV

,

which takes [x]eV to [x]εV . For any fixed n ≥ 1, the standard

basis of Cn is {e j
Cn = (0, . . . ,0,1,0, . . . ,0)}n

1 . Suppose Cm has

standard basis {e i
Cm }m

1 , and if A ∈ L(Cn ,Cm), its standard
matrix representation is the matrix

[A]εV ,eV =

 a11 · · · a1n
...

...
...

am1 · · · amn

 where

 a1 j
...

am j

=φεV Ae j
V

∀1 ≤ j ≤ n. (3)

If V and W have ordered bases {e j
V }n

1 , and {εi
W }m

1 , and A ∈
L(V ,W ); the matrix representation of A with respect to eV

and εW is
[A]eV ,εW = [φεW Aφ−1

eV
]eV ,εW .

More concretely, if [A]eV ,εW is given by the array of num-

bers in Eq. (3), then
[
a1 j · · · am j

]T =φεW Ae j
V . We sum-

marize the matrix representations discussed using fig. 1.

V Cn

Cn

ϕeV

ϕεV

ϕeV ,εV

(a) Transition map from eV to εV .

V Cm

W Cn

A
ϕeV

[A]eV ,εW

ϕεW

(b) Matrix of A ∈ L(V ,W ) with respect to bases eV and εW .

Figure 1: Diagrams representing matrix representations.

1.3. Kernel and Range

If ui ∈ L(R(Ji ); R(Ii )), its kernel is Ker(u) = {x ∈ R(Ji ), ux =
0}, and its range is Im(u) = {ux, x ∈ R(Ji )}, we remark that
both are subspaces (of R(Ji ) and R(Ii ) respectively).

On one hand, ui is an injection iff it has a trivial ker-
nel iff it admits a left inverse σ ∈ L(R(Ii ); R(Ji )) where
σu = idR(Ji ). On the other hand, ui is a surjection iff its
range is V iff it admits a right inverse σ ∈ L(R(Ii ); R(Ji ))
where uiσ= idR(Ii ).

Injective linear maps are sometimes referred to as linear
embeddings. If ui is a bijection, then we say ui is a vector
space isomorphism, R(Ji ) and R(Ii ) are isomorphic and we

write R(Ji ) ≈ R(Ii ). A linear endomorphism on R(Ii ) is a
linear map ui ∈ L(R(Ii )), and ui is an automorphism on V
whenever it is invertible.

For any subspace R(Ji , qi ) ⊆ R(Ji ), the quotient space of
R(Ji , qi ) is defined as the set of cosets of R(Ji , qi ) and is
denoted by R(Ji )/R(Ji , qi ). It is a vector space under ele-
mentwise addition and scalar multiplication. We recall

x +R(Ji , qi ) = y +R(Ji , qi ) iff x − y ∈R(Ji , qi ).

If ui ∈ L(R(Ji ); R(Ii )), we can decompose R(Ji ) = Ker(u)⊕
R(Ji , qi )R(Ji ), and for some subspace R(Ii , pi ) ⊆ R(Ii ),
R(Ii ) = Im(u)⊕R(Ii , pi ). The universal property of the quo-
tients states that R(Ji )/Ker(u) ≈ Im(u).

1.4. Multilinear mappings

A mapping X : R(J1)×R(J2) → W into a vector space W is
bilinear if for every x1 ∈R(J1), and x2 ∈R(J2),

X (x1, ·) : R(J2) →W and X (·, x2) : R(J1) →W

are linear mappings on the indicated domains. Similarly,
a mapping X :

∏N
1 R(Ji ) →W is N -linear, or muiltilinear in

its arguments whenever

X (xn−1, · , xn+N−n) is N −1 linear for all xi ∈R(Ji ),

1 ≤ i ≤ N , i 6= n, and 1 ≤ n ≤ N .

Analogous to the case where a linear mapping between two
vector spaces R(Ji ) and R(Ii ) is determined by its action
on the basis vectors {eαi

R(Ji )}
Ji
αi=1, a multilinear mapping X is

characterized by its action on the following set of elements{
(eα1

R(J1), . . . ,eαN
R(JN )), 1 ≤αi ≤ Ji , 1 ≤ i ≤ N

}
. (4)

A common misconception is that multilinear maps can be
defined by specifying values on{

(0, . . . ,eαi
R(Ji ),0, . . . ,0), 1 ≤αi ≤ Ji , 1 ≤ i ≤ N

}
,

this is not true. Take X (x, y) = e1,∗
R(J1)e

2,∗
R(J2), then

X (e1
R(J1),0) = 0, and X (0,e2

R(J2)) = 0, however

X (e1
R(J1),e2

R(J2)) = 1.

This is because the notion of multilinearity cannot be de-
scribed by any external direct sums of the vector spaces in-
volved, and to do so we must introduce the tensor product.

1.5. Notes and References

1. Undergraduate texts: [Joh21a; Joh21b; Lan12; Str93;
Axl97].
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Multilinear Algebra 2. Metric Vector Spaces

2. Advanced undergraduate: [Hal12].

3. Graduate level texts: [Roman2007Advanced; Lan05;
Hun03]

4. Matrix Analysis: [HJ90; HHJ94]

2. Metric Vector Spaces

2.1. Projection Mappings

We turn our attention to ways of ’factorizing’ linear map-
pings. Suppose V = S⊕T , a projection onto S is an operator
ρ where ρ(s + t ) = s for all s ∈ S and t ∈ T . It follows that
V = ρ(V )⊕Ker(ρ), and x ∈ S iff ρx = x.

Two projections ρ1,ρ2, with images S1, S2 are orthogonal
whenever ρ1ρ2 = 0 = ρ2ρ1.1 A resolution of the identity on
V is a sum of projection operators {ρi }k

1

k∑
1
ρi = idV where ρiρ j = 0 = ρ jρi .

It can be shown that the images of the projections form a
direct sum decomposition of V , in symbols V = ⊕k

1ρi (V ).
Conversely, if V = ⊕k

1 Si , the projections ρi onto Si form a
resolution of the identity.

2.2. Eigenvalues and eigenvectors

An eigenvector for a linear mapping u ∈ L(V ,W ) is a non-
zero element x ∈V where ux = λx for some λ ∈C; and λ is
the eigenvalue associated to x. The eigenspace is the sub-
space of V containing all vectors x that satisfy the equation
ux =λx.

An operator u ∈ L(V ) is said to be diagonalizable if there
exists a spectral resolution of its eigenvalue:

u =
k∑
1
λiρEi where {λi }k

1 are distinct eigenvalues of u,

and {ρEi }k
1 are mutually orthogonal projections onto sub-

spaces of V .

2.3. Inner Product Spaces

Geometry is the most potent on inner product spaces,
which are vector spaces equipped with an inner product.
A scalar-valued function ω : V ×V → F where F = R or C is
an inner product if it is

1equivalently: S2 ⊆ Ker(ρ1) and S1 ⊆ Ker(ρ2.

positive definite
ω(x, x) ≥ 0 for all x, and {0} = {x, ω(x, x) = 0}.

sesquilinear
if F= C, then ω is linear (resp. conjugate-linear) in its
first (resp. second) coordinate.

symmetric
if F=R, then ω is a symmetric bilinear form.

We assume for the rest of this section that all vector spaces
are finite-dimensional inner product spaces and we use
〈·, ·〉V in favour of ω. If U is another inner product space,
and u ∈ L(V ,W ). We say u is an isometry if it relates the
inner product on V to that on U , this means for all x, y ∈U ,
〈ux, uy〉V = 〈x, y〉U ; and if this is the case, u is an isometric
isomorphism if it is also a vector space isomorphism.

Every inner product space is normed, with x 7→ ‖x‖ =p〈x, x〉V for all x ∈ V . Finally, a Hilbert space is an inner
product space that is Cauchy-complete with respect to its
norm topology.

Two vectors x, y ∈ V are orthogonal to each other, written
x ⊥ y whenever 〈x, y〉V = 0. If E ⊆ V is any subset, its
orthogonal complement is E⊥ = {x ∈V , x ⊥ y ∀y ∈V }.

If V is an inner product space, and S ⊆ V is a subset, it is
orthogonal whenever x ⊥ y for all x 6= y in S. If ‖x‖ = 1 for
all x, it is orthonormal.

For a given subspace S ⊆ V , its linear complement T can
be chosen such that V = S ⊕T , and S ⊥ T . 2

A projection ρ is orthogonal whenever Ker(ρ) ⊥ ρ(V ), not
to be confused with two (mutually) orthogonal projec-
tions. A resolution of the identity is orthogonal whenever
each projection ρi involved is orthogonal.

The Hilbert space adjoint of u is instead denoted by u∗ ∈
L(W,V ), which is the unique linear mapping that satisfies

〈ux, y〉V = 〈x, u∗y〉U .

We note that u∗∗ = u, and u is a surjection (resp. an injec-
tion) iff u∗ is an injection (resp. a surjection). The matrix
representation of the Hilbert space adjoint is the Hermi-
tian transpose3 of the matrix representation.

We mention several important classes of operators.

2If V is infinite-dimensional, assume that S is closed.
3also called the conjugate transpose
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Multilinear Algebra 3. Tensors

Unitary
A unitary operator u ∈ L(V ) is an isometric isomor-
phism on V . Equivalent characterizations: u∗u = idV ,
columns (resp. rows) of any matrix representation of
u form orthonormal basis in Cn .

Normal
A normal operator ui ∈ L(R(Ji )) is an operator that
commutes with its adjoint: u∗u = uu∗. Equiva-
lent characterization: u can be unitarily diagonalized,
that is: there exists orthogonal eigenspaces {Ei }k

1 cor-
responding to the eigenvalues {λi }k

1 , such that u =∑k
1 λiρEi ,

V =⊕Ei , Ei ⊥E j if i 6= j .

Note that unitarily diagonalizability is the same as
saying there exists an orthonormal basis {e i

V }n
1 where

[u]b,b = diag(λ1, . . . ,λk ).

Self-adjoint
An operator u is self-adjoint whenever u∗ = u. Some
refer to self-adjoint operators as Hermitian when the
base field is C or symmetric if the base field is R.

If u∗ =−u, it is said to be skew self-adjoint (resp. skew
Hermitian, and skew-symmetric if the base field is R.)

Positive (semi-)definite
A self-adjoint operator u is positive semi-definite if
Qu(x) = 〈ux, x〉V ≥ 0 for all x ∈V , it is positive definite
whenever Ker(Qu) = {0}.

Equivalently, u is positive semi-definite iff all of its
eigenvalues are non-negative, and positive definite iff
all of its eigenvalues are strictly positive.

If u ∈ L(V ,W ), then Ker(u∗) = Im(U )⊥, and u∗(V ) =
Ker(u)⊥. It is clear that u is unitary (resp. normal, positive
semi-definite, positive definite) iff u∗ is.

2.4. Grammian and its applications

The Grammian [AM06] of a linear mapping u ∈ L(V ,W )
is the operator u∗u ∈ L(U ). Properties of the Gram-
mian include: Ker(u∗u) = Ker(u), Ker(uu∗) = Ker(u∗)
and also u∗ Im(U ) = Im(U ), uu∗(V ) = u∗(V ), see
[Roman2007Advanced]. A special case worth mentioning
is when u is an embedding, then Ker(u∗u) = {0}, whence
the Grammian is unitary on U .

If u ∈ L(V ,W ) is arbitrary, we can decompose U = Im(u∗)⊕
Ker(u), and V = Im(u) ⊕ Ker(u∗). The Grammian u∗u is

positive semi-definite, and can be unitarily diagonalized
by basis {b j }n

1 . By reordering b, we can assume that

[u∗u]b,b = diag(σ2
1, . . . ,σ2

r ,0, . . . ,0), σ2
1 ≥ ·· · ≥σ2

r > 0.

The numbers {σi }r
1 are the singular values of u.

Matrix Norms
We turn our attention to m ×n complex matrices, which
we will denote by Mm,n . Let A ∈ Mm,n with entries as in
Eq. (3). If p ∈ (0,+∞], the entrywise l p norm of A is

‖A‖p =
{(∑

i , j |ai j |p
)1/p 0 < p <+∞

maxi , j |ai j | p =+∞ ,

4 The Frobenius norm of A is the entrywise 2-norm of A, is
usually denoted by ‖A‖F instead of ‖A‖2,

‖A‖F =∑
i
|σi (A)|2 is the sum of the squares of the singular values of A.

The operator norm on A is ‖A‖op = sup|x|≤1 |Ax|, with |·|
norms induced by the inner products on Cn , and Cm . The
spectral norm coincides with the 2-norm, the former de-
fined by

‖A‖spec =σ1(A) = ‖A‖op ,

where σ1(A) is the largest singular value of A. One also has
the estimate

‖A‖op ≤ ‖A‖F .

3. Tensors

This section follows [Gre67, Chp 1-3] closely, and summa-
rizes the definitions and theorems that we will need for the
discussions that follow. We will shy away from defining,
proving, or discussing the notions of universality that is
prevalent in category theory [Rie17; Lan05] and the gen-
eralization to tensor products of modules and algebras
[Lan05], nor will we discuss its implications in differential
geometry [Lee2013Introduction; Lee2019Introduction].

3.1. Tensor Product

The tensor product of the vector spaces {R(Ji ), i = 1, . . . , N }
is any pair of the form (T,

⊗
) such that T is a real vector

space and
⊗

is a N -linear map

⊗
:

N∏
1
R(Ji ) →T,

⊗
(x1, . . . , xN ) = x1 ⊗·· ·xN .

The mapping
⊗

is required to satisfy the universal property
of multilinearity (see fig. 2 also):

4we note that the l 0 norm is sometimes used to refer to the number of
non-zero entries of A.
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∏N
1 R(Ji ) T

W

⊗

X
X⊗

Figure 2: Universal Property of Multilinearity

If X :
∏N

1 R(Ji ) → W is any multilinear map
from

∏N
1 , there exists a unique linear map X⊗ ∈

L(T; W ) such that

X⊗ ◦⊗= X .

Several points that are worth mentioning.

Not Unique
The tensor product is not unique, it is defined up to
a linear isomorphism. Any pair that satisfies the two
properties is called a tensor product of {R(Ji )}N

1 .

What does T do?
Roughly speaking, T is the vector space designed to
capture the valuations of multilinear mappings (it is
also the leanest possible vector space — thus giving
rise to the ’unique’ descent of a multilinear map into
a linear one [Gre67]), similar to how a multilinear map
is characterized by its values on the set given in Eq. (4).

What does
⊗

do?
The mapping

⊗
allows one to factor out the multi-

linearity of N -linear X . The universal property also
gives a bijective correspondence between multilin-
ear mappings out of

∏N
1 and linear mappings out of

T, while preserving the multilinear structure of the
mappings involved.

Existence
The tensor product of any finite family of vector
spaces always exists, we will not pursue the proof of
this here. The reader is encouraged to consult the
proof using free vector spaces [Roman2007Advanced;
Lee2013Introduction; Lee2019Introduction; Lan05;
Gre67].

We will use (⊗N
1 R(Ji ),

⊗
) to denote the tensor product of

{R(Ji )}N
1 , and we may omit the factorization mapping

⊗
when it is understood. Since every multilinear map gives
rise to a unique linear map on ⊗N

1 R(Ji ), we identify X⊗ ≈ X .

Multilinear mappings from
∏N

1 R(Ji ) are here-
inafter identified as linear maps from ⊗N

1 R(Ji ).

If (x1, . . . , xN ) ∈ ∏N
1 R(Ji ) it is customary to write ⊗N

1 xi =⊗
(x1, . . . , xN ) as an element in ⊗N

1 R(Ji ).

We conclude this section with a list of elementary proper-
ties of the tensor product. These properties are proven in
[Roman2007Advanced; Gre67].

Commutative
If σ is a permutation on {1, . . . , N }, then ⊗N

1 R(Jσ(i ))
and ⊗N

1 R(Ji ) are linearly isomorphic as vector spaces.
Because of this, we sometimes write⊗

(x1, . . . , xN ) = x1 ⊗·· ·⊗xN .

Associative
For the case of N = 3, (R(J1)⊗R(J2))⊗R(J3) is linearly
isomorphic to R(J1)⊗ (R(J2)⊗R(J3)), which is linearly
isomorphic to ⊗3

1R(Ji ).

Tensor Product of Base Field
For every N , the N -fold tensor product of the base
field N isomorphic to the base field ⊗N

1 R∼=R.

Tensor Product of Dual Spaces
The tensor product of the dual spaces is the dual space
of the tensor product:[⊗N

1 R(Ji )
]∗ ∼=⊗N

1 R(Ji )∗.

Basis of the Tensor Product
The mapping

⊗
of the set in Eq. (4) forms a basis of

⊗N
1 R(Ji ).{

eα⊗N
1 R(Ji )

= eα1
R(J1) ⊗·· ·⊗eαN

R(JN ), α ∈⊗N
i=1N

+(Ji )
}

; (5)

An element x ∈⊗N
1 R(Ji ) can be expressed as a sum

x = ∑
1≤α1≤J1

· · · ∑
1≤αN≤JN

xα1,...,αN eα1
R(J1) ⊗·· ·⊗eαN

R(JN )

= ∑
α∈⊗N

i=1N
+(Ji )

xαeα⊗N
1 R(Ji )

, (6)

where xα ∈ R corresponds to the coefficient of eαi
R(Ji ).

When we discuss linear mappings between vector
spaces (and tensor products), we will often use the
symbols I and β.

The tensor product ⊗N
1 R(Ii ) has basis{

eβ⊗N
1 R(Ii )

= eβ1
R(I1) ⊗·· ·⊗eβN

R(IN ), β ∈⊗N
i=1N

+(Ii )
}

.

Tensor Product is not a Direct Sum
For simplicity we restrict ou r study to the tensor prod-
uct R(J1)⊗R(J2). The observation that

⊗
is bilinear

leads us to

x1 ⊗0+0⊗x2 does not equal x1 ⊗x2,
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unless x1 = 0 or x2 = 0, and

a1x1 ⊗ y +a2x ′
1 ⊗ y = (a1x1 +a1x ′

1)⊗ y,

for all a1, a2 ∈R, x1, x ′
1 ∈R(J1); similarly for the second

coordinate.

Dimension of the Tensor Product
The dimension of the tensor product ⊗N

1 R(Ji ) is the
product of the dimensions

∏N
1 Ji . The same is not

true for external direct sums.

In fact,
∏N

1 R(Ji ) has dimension
∑N

1 Ji , this is the prin-
cipal reason why the external direct sum always fail to
capture multilinearity when N ≥ 2 and Ji ≥ 2.

3.2. Direct Sums (Optional)

Direct Sums (highly related to Tracy Singh decomposi-
tion), indexing conventions, and matrix unfoldings. Idea
is that block matrices factorize a linear map into smaller
linear maps that operate between subspaces which sum
(directly) to the original space.

Suppose for each i = 1, . . . , N , the direct sums

R(Ji ) =⊕Qi
qi=1R(Ji , qi ) and R(Ii ) =⊕Pi

pi=1R(Ii , pi ), (7)

where each of the subspaces R(Ji , qi ) (resp. R(Ii , pi ) have
dimension q i (resp. p i ), and Ji = ∑Qi

qi=1 q i (resp. Ii =∑Pi
pi=1 p i . Then,

⊗N
1 R(Ji ) =⊕Q1

q1=1 · · ·⊕QN
qN=1 ⊗N

1 R(Ji , qi )

⊗N
1 R(Ii ) =⊕P1

p1=1 · · ·⊕
pN
pN=1 ⊗N

1 R(Ii , pi )

Proposition 3.1 Direct Sums of Tensor Products

If R(Ji ) is given by Eq. (7), there exists a linear isomor-
phism such that

⊗N
1 R(Ji ) =⊗N

i=1⊕Qi
qi=1

[
R(Ji , qi )

]=⊕q∈⊗N
1 Qi

⊗N
i=1R(Ji , qi )

See [Gre67, chp 1.9-1.12] for the proof.

For each R(Ji ), we can enumerate its basis vectors in a
manner that respects the direct sum structure.

Dimension

dimR(Ji , pi ) = (Ji ; qi ) and
Pi∑

pi=1
(Ji ; pi ) = Ji .

Restricted / Projected Maps
We want a good way of unfolding the subspaces, fix

(Ii , qi ) and (Ji , pi ), referring to the (βi , qi )th (resp.
(αi , pi )th) basis vector in the subspace (Ii , qi ) (resp.
(Ji , pi ))) of R(Ii ) (resp. R(Ji )).

qi−1∑
wi=1

(Ii ; wi )+ (βi , qi )

Lexicographical ordering[
⊕Q1

q1=1R(J1, q1)
]
⊗·· ·⊗

[
⊕QN

qN=1R(JN , qN )
]

Tracy-Singh Ordering

⊕Q1
q1=1 · · ·⊕QN

qN=1

[
R(J1, q1)⊗·· ·⊗R(JN , qN )

]
Definition 3.2 Tracy Singh Product

Also called partitioned Kronecker product, block Kro-
necker product, generalized Rao product.
[TJ89] contains proofs of various properties, of the
partitioned Kronecker product. It goes over a special
case that is of interest in statistics: the balanced par-
titioned product. This is when q i = p i = r i = si , and
provides transformation formulas.

[Liu99] contain properties for when the A and B are
matrices, where

A =
[

A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
. (8)

The matrices in the form of Eq. (8) is of particular in-
terest, because of SVD.

The lexicographical ordering (or dictionary ordering) of ba-
sis vectors [Tuc66, pp.281] in ⊗N

1 R(Ji ) is the correspon-
dence between

{1, . . . ,
N∏
1

Ji } and
{
⊗N

1 eαi
R(Ji ), 1 ≤αi ≤ Ji , 1 ≤ i ≤ N

}
,

such that indices αi corresponding to a larger i value
(closer to N ) take precedence during enumeration from 1
to

∏N
1 Ji . If α= (α1, . . . ,αN ) ∈⊗N

i=1N
+(Ji ),

α∼= (α1 −1)
N∏
2

Ji + (α2 −1)
N∏
3

Ji +·· ·+ (αN−1 −1)JN +αN

=
N∑

i=1
(αi −1)

N∏
j=i+1

J j . (9)

Given an integer a ∈ [1,
∏N

1 Ji ], we can find its correspond-
ing α ∈ ⊗N

i=1N
+(Ji ) by taking the inverse of Eq. (9). An ex-

plicit construction of this inverse is found in ??.
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3.3. Linear Maps as Tensors

Given R(Ji ) and R(Ii ) and their bases{
eβ⊗N

1 R(Ii )
= eβ1

R(I1) ⊗·· ·⊗eβN
R(IN ), β ∈⊗N

i=1N
+(Ii )

}
{

eα⊗N
1 R(Ji )

= eα1
R(J1) ⊗·· ·⊗eαN

R(JN ), α ∈⊗N
i=1N

+(Ji )
}

(10)

the tensor product (cf. Eq. (5)) induces a basis of R(Ii )⊗
R(Ji )∗ {

eβi
R(Ii ) ⊗eαi , ∗

R(Ji ) , 1 ≤βi ≤ Ii , 1 ≤αi ≤ Ji

}
. (11)

The space L(R(Ji ); R(Ii )) is naturally isomorphic to R(Ii )⊗
R(Ji )∗. To see this, fix i = 1, . . . , N , and we define the map

T : R(Ii )⊗R(Ji )∗ → L(R(Ji ); R(Ii )),

by specifying its action on basis vectors of R(Ii )⊗R(Ji )∗:

T(yR(Ii ) ⊗ y∗
R(Ji ))(x) = yR(Ii )〈y∗

R(Ji ), x〉R(Ji )∗, R(Ji ). (12)

If yR(Ii ) ⊗ y∗
R(Ji ) ∈ Ker(T), then either yR(Ii ) = 0 or y∗

R(Ji ), and
in both cases yR(Ii ) ⊗ y∗

R(Ji ) = 0⊗0 = 0.

Conversely, given ui ∈ L(R(Ji ); R(Ii )), we claim that the
numbers {

ui (βi , αi ) ∈R, 1 ≤αi ≤ Ji , 1 ≤βi ≤ Ii

}
obtained through the scalar product of R(Ii ) with its dual
R(Ii )∗ completely characterizes ui :

ui (βi , αi ) = 〈eβi , ∗
R(Ii ) , ui (eαi

R(Ji ))〉R(Ii )∗
1 ≤αi ≤ Ji

1 ≤βi ≤ Ii
. (13)

Fix u′
i ∈R(Ii )∗⊗R(Ji ) with

u′
i =

∑
1≤βi≤Ii ,
1≤αi≤Ji

ui (βi , αi )(eβi
Ii
⊗eαi , ∗

Ji
). (14)

For any xi =∑
1≤αi≤Ji

xαi
i eαi

R(Ji ) ∈R(Ji ),

T(u′
i )(xi ) = ∑

1≤αi≤Ji ,
1≤βi≤Ii

ui (βi , αi )T(eβi
R(Ii ) ⊗eαi , ∗

R(Ji ) )(xi )

= ∑
1≤αi≤Ji ,
1≤βi≤Ii

ui (βi , αi )〈eαi , ∗
R(Ji ) , xi 〉R(Ji )∗, R(Ji )e

βi
R(Ii )

= ∑
1≤αi≤Ji ,
1≤βi≤Ii

ui (βi , αi )〈eαi , ∗
R(Ji ) ,

∑
1≤γi≤Ji

xγi
i eγi

R(Ji )〉R(Ji )∗, R(Ji )e
βi
R(Ii )

= ∑
1≤αi≤Ji ,
1≤βi≤Ii

ui (βi , αi )xαi
i eβi

R(Ii ). (15)

Which proves that T(u′
i ) = ui , and we identify u′

i with its
image under T (and conversely)

ui =
∑

1≤βi≤Ii ,
1≤αi≤Ji

ui (βi , αi )(eβi
Ii
⊗eαi , ∗

Ji
). (16)

Adjoint Mapping in Coordinates

If i = 1, . . . , N , the adjoint map u∗
i ∈ L(R(Ii )∗; R(Ji )∗) has

coordinate representation

u∗
i (αi ,βi ) = 〈eβi , ∗

R(Ii ) , ui (eαi
R(Ji ))〉R(Ii )∗, R(Ii ) = ui (βi , αi )

∀1 ≤αi ≤ Ji , 1 ≤βi ≤ Ii .

Scalar Product on Linear Endomorphisms

Composition Algebra. Because R(Ji ) and R(Ji )∗ are in du-
ality, and since

R(Ji )⊗R(Ji )∗ ∼=R(Ji )∗⊗R(Ji ),

we consider R(Ji )⊗R(Ji )∗ to be in self-duality, and its scalar
product exhibits a certain cross-multiplication structure:

〈yR(Ji ) ⊗ y∗
R(Ji ), xR(Ji ) ⊗x∗

R(Ji )〉R(Ji )⊗R(Ji )∗

= 〈y∗
R(Ji ), xR(Ji )〉R(Ji )∗, R(Ji )〈x∗

R(Ji ), yR(Ji )〉R(Ji )∗, R(Ji ).

3.4. Tensor Product of Linear Mappings

Let ui be linear mappings given as in Eq. (16)
for i = 1, . . . , N , we define its tensor prod-
uct [Roman2007Advanced; Lee2013Introduction;
Lee2019Introduction; Gre67, Chp 14, Chp 1-3, Chp 12,
App. D] as the map

U : ⊗N
1 R(Ji ) →⊗N

1 R(Ii ), we write U =⊗N
1 ui ,

by specifying its values on the basis of ⊗N
1 R(Ji ):

U (eα⊗N
1 R(Ji )

) =⊗N
1 ui (eαi

R(Ji )). (17)

We remark that Equation (17) implies

U (⊗N
1 xi ) =⊗N

1 ui (xi ), ∀xi ∈R(Ji ), 1 ≤ i ≤ N .

Since U is an element in L(⊗N
1 R(Ji ); ⊗N

1 R(Ii )) ∼= ⊗N
1 R(Ji )⊗

⊗N
1 R(Ii )∗ and thus admits a basis expansion in the form of

Eq. (16) — which we will now compute. If γ= (γ1, . . . ,γN ) ∈
⊗N

i=1N
+(Ji ),

U (eγ⊗N
1 R(Ji )

) = ⊗
i=1, ... ,N

∑
1≤αi≤Ji ,
1≤βi≤Ii

ui (βi , αi )eβi
R(Ii )〈e

αi , ∗
R(Ji ) , eγi

R(Ji )〉R(Ji )∗

= ⊗
i=1, ... ,N

∑
1≤αi≤Ji ,
1≤βi≤Ii

ui (βi , αi )eβi
R(Ii )δ(αi , γi )

= ⊗
i=1, ... ,N

∑
1≤βi≤Ii

ui (βi , γi )eβi
R(Ii )

= ∑
1≤β1≤I1

· · · ∑
1≤βN≤IN

∏
i=1, ... ,N

ui (βi , γi )
⊗

i=1, ... ,N
eβi
R(Ii )

= ∑
1≤β1≤I1

· · · ∑
1≤βN≤IN

∏
i=1, ... ,N

ui (βi , γi )eβ⊗N
1 R(Ii )

.

(18)
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Applying the dual vector eν,∗
⊗N

1 R(Ii )
, where ν = (ν1, . . . ,νN ) ∈

⊗N
i=1N

+(Ii ) to Eq. (18) yields

U (ν,γ) =U ((ν1, . . . ,νN ), (γ1, . . . γN ))

=
⟨

eν,∗
⊗N

1 R(Ii )
, U (eγ⊗N

1 R(Ji )
)〉⊗N

1 R(Ii )∗, ⊗N
1 R(Ii )

=
⟨

eν,∗
⊗N

1 R(Ii )
,

∑
β∈⊗N

i=1N
+(Ii )

∏
i=1, ... ,N

ui (βi , γi )eβ⊗N
1 R(Ii )

〉⊗N
1 R(Ii )∗, ⊗N

1 R(Ii )

= ∑
β∈⊗N

i=1N
+(Ii )

∏
i=1, ... ,N

ui (βi , γi )
⟨

eν,∗
⊗N

1 R(Ii )
, eβ⊗N

1 R(Ii )
〉⊗N

1 R(Ii )∗, ⊗N
1 R(Ii )

= ∑
β∈⊗N

i=1N
+(Ii )

∏
i=1, ... ,N

ui (βi , γi )
∏

i=1, ... ,N
〈eνi ,∗

R(Ii )∗ , eβ
R(Ii )〉R(Ii )∗, R(Ii )

= ∑
β∈⊗N

i=1N
+(Ii )

∏
i=1, ... ,N

ui (βi , γi )
∏

i=1, ... ,N
δ(νi , βi )

= ∑
β∈⊗N

i=1N
+(Ii )

∏
i=1, ... ,N

ui (βi , γi )δ(ν,β)

= ∏
i=1, ... ,N

ui (νi , γi ) (19)

This leads us to write

U = ∑
1≤α1≤J1,
1≤β1≤I1

· · · ∑
1≤αN≤JN ,
1≤βN≤IN

∏
i=1, ... ,N

ui (βi , αi )eβ, ∗
⊗N

1 R(Ii )
⊗eα⊗N

1 R(Ji )

= ∑
α∈⊗N

i=1N
+(Ji ),

β∈⊗N
i=1N

+(Ii )

U (β, α)eβ, ∗
⊗N

1 R(Ii )
⊗eα⊗N

1 R(Ji )
. (20)

Next, suppose we are given x ∈ ⊗N
1 R(Ji ) as in Eq. (6), we

compute U (x) in explicitly using Eq. (19)

U (x) =U

( ∑
1≤α1≤J1

· · · ∑
1≤αN≤JN

xαeα⊗N
1 R(Ji )

)
= ∑

α∈⊗N
i=1N

+(Ji )

∑
β∈⊗N

i=1N
+(Ii )

U (β, α)xαeβ, ∗
⊗N

1 R(Ii )
⊗eα⊗N

1 R(Ji )

= ∑
α∈⊗N

i=1N
+(Ji ),

β∈⊗N
i=1N

+(Ii )

U (β, α)xαeβ, ∗
⊗N

1 R(Ii )
⊗eα⊗N

1 R(Ji )
. (21)

Basis of L(⊗N
1 R(Ji ); ⊗N

1 R(Ii ))
The space L(⊗N

1 R(Ji ); ⊗N
1 R(Ii )) is spanned by ele-

ments {
⊗N

1 ui , ui ∈ L(R(Ji ); R(Ii )), 1 ≤ i ≤ N
}

.

The same does not hold in infinite dimensions
[Gre67].

Products of Functionals
If we take R(Ii ) = R for all i = 1, . . . , N , and µi ∈
L(R(Ji );R) =R(Ji )∗,

µi =
∑

1≤αi≤Ji

µi (αi )eαi , ∗
R(Ji ) (22)

Previous calculations (cf. Eqs. (16) and (19)) show that
the tensor product of µ=⊗N

1 µi is given by

µ= ∑
α∈⊗N

i=1N
+(Ji )

∏
i=1, ... ,N

µi (αi )eα, ∗
⊗N

1 R(Ji )

= ∑
α∈⊗N

i=1N
+(Ji )

µ(α), (23)

where µ(α) = ∏
i=1, ... ,N µi (αi ) for all α ∈ ⊗N

i=1N
+(Ji ).

The tensor product µ is identified with the N -linear
function: µ :

∏
i=1, ... ,N R(Ji ) →R, with

µ(x1, . . . , xn) = ∏
i=1, ... ,N

µi (xi ) ∈R ∀xi ∈R(Ji ), i = 1, . . . , N .

3.5. Multilinear Functions

Let Y ∈ ⊗N
1 R(Ji )∗, the space of N -linear functions de-

fined on
∏

i=1, ... ,N R(Ji ) and identified as an element in
L(⊗N

1 R(Ji ); R) =⊗N
1 R(Ji )∗. The latter has basis{

eα, ∗
⊗N

1 R(Ji )
= eα1, ∗

R(J1) ⊗·· ·⊗eαN , ∗
R(JN ) , α ∈⊗N

i=1N
+(Ji )

}
. (24)

The set of numbers {Y (γ)}γ∈⊗N
i=1N

+(Ji ) define Y , where

Y = ∑
γ∈⊗N

i=1N
+(Ji )

Y (γ)eγ, ∗
⊗N

1 R(Ji )
. (25)

Suppose x ∈ ⊗N
1 R(Ji ) is given by Eq. (6), then Y (x) has the

following satisfying formula:

Y (x) = ∑
γ∈⊗N

i=1N
+(Ji )

Y (γ)xγ .

This forms a scalar product between ⊗N
1 R(Ji ) and

⊗N
1 R(Ji )∗, since ⊗N

1 R(Ii )∗ ∼=⊗N
1 R(Ii )∗ =R(I1)∗⊗·· ·⊗R(IN )∗

[Gre67, Chp 1], we have the scalar product

〈y1, ∗⊗·· ·⊗ y N , ∗, x1 ⊗·· ·⊗xN 〉⊗N
1 R(Ii )∗, ⊗N

1 R(Ii )

= ∏
i=1, ... ,N

〈y i , ∗, xi 〉R(Ii )∗, R(Ii ) ∀y i , ∗ ∈R(Ii )∗, xi ∈R(Ji ),

∀i = 1, . . . , N . (26)

Now, let Y ∈ ⊗N
1 R(Ii )∗, and U = ⊗N

1 ui ∈
L(⊗N

1 R(Ji ); ⊗N
1 R(Ii )) where each ui is as in Eq. (16). Sup-

pose that

Y (x) = ∑
γ∈⊗N

i=1N
+(Ii )

Y (γ)eγ, ∗
⊗N

1 R(Ii )
. (27)

We compute the adjoint U∗Y ∈ ⊗N
1 R(Ji )∗ in coordi-

nates. For any α ∈ ⊗N
i=1N

+(Ji ) we compute U∗Y (α) =
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U∗Y (eα⊗N
1 R(Ji )

):

U∗Y (α) = 〈Y , U (eα⊗N
1 R(Ji )

)〉⊗N
1 R(Ii )∗, ⊗N

1 R(Ii )

= 〈Y ,
∑

β∈⊗N
i=1N

+(Ii )

U (β, α)eβ⊗N
1 R(Ii )

〉⊗N
1 R(Ii )∗, ⊗N

1 R(Ii )

= ∑
γ∈⊗N

i=1N
+(Ii )

∑
β∈⊗N

i=1N
+(Ji )

〈Y (γ)eγ, ∗
⊗N

1 R(Ii )
, U (β, α)eβ⊗N

1 R(Ii )
〉⊗N

1 R(Ii )∗, ⊗N
1 R(Ii )

= ∑
γ∈⊗N

i=1N
+(Ii ),

β∈⊗N
i=1N

+(Ji )

Y (γ)U (β, α)〈eγ, ∗
⊗N

1 R(Ii )
, eβ⊗N

1 R(Ii )
〉⊗N

1 R(Ii )∗, ⊗N
1 R(Ii )

= ∑
γ∈⊗N

i=1N
+(Ii ),

β∈⊗N
i=1N

+(Ji )

Y (γ)U (β, α)
∏

i=1, ... ,N
δ(γi , βi )

= ∑
γ∈⊗N

i=1N
+(Ii ),

β∈⊗N
i=1N

+(Ji )

Y (γ)U (β, α)δ(γ, β) = ∑
γ∈⊗N

i=1N
+(Ii )

Y (γ)U (γ, α) .

(28)

From Eq. (28), we can read off the coefficient (U∗Y )(α)

(U∗Y )(α) = ∑
γ∈⊗N

i=1N
+(Ii )

Y (γ)U (γ, α), (29)

and the N -linear mapping U∗Y ∈⊗N
1 R(Ii )∗ can be written

U∗Y = ∑
γ∈⊗N

i=1N
+(Ii ),

α∈⊗N
i=1N

+(Ji )

Y (γ)U (γ, α)eα, ∗
⊗N

1 R(Ji )
. (30)

It is fruitful to also consider U∗ ∈ L(⊗N
1 R(Ii )∗; ⊗N

1 R(Ji )∗)
and its coordinate representation with respect to the basis:{

eα, ∗
⊗N

1 R(Ji )
⊗eγ⊗N

1 R(Ii )
, α ∈⊗N

i=1N
+(Ji ), γ ∈⊗N

i=1N
+(Ii )

}
.5

We claim that (⊗N
1 u∗

i ) = (⊗N
1 ui )∗ =U∗ and

U∗(α, β) = ∏
i=1, ... ,N

u∗
i (αi , βi ) .

According to Eq. (19), for any β ∈⊗N
i=1N

+(Ii ),

U∗(eβ, ∗
⊗N

1 R(Ii )
) = ∑

α∈⊗N
i=1N

+(Ji )

U (β, α)

= ∑
α∈⊗N

i=1N
+(Ji )

∏
i=1, ... ,N

ui (βi , αi )

= ∑
α∈⊗N

i=1N
+(Ji )

∏
i=1, ... ,N

u∗
i (αi , βi )

= (⊗N
1 u∗

i )(eβ, ∗
⊗N

1 R(Ii )
) .

5Note that e
γ, ∗∗
⊗N

1 R(Ii )
= e

γ

⊗N
1 R(Ii )

under the canonical identification of a

vector space with its bidual, since all vector spaces under consideration
are of finite dimension [Brezis2010Functional].

3.6. Matrization

If µi =∑
1≤αi≤Ji

µi (αi )eαi , ∗
R(Ji ) is an element in R(Ji )∗, its Riesz

vector is the unique vector in R(Ji ) that satisfies⟨
µi , xi

⟩
R(Ji )∗, R(Ji ) = 〈µ∧

i , xi 〉R(Ji ) ∀xi ∈R(Ji ).

The basis {eαi
R(Ji )}

Ji
αi=1 is assumed to be orthonormal, if xi =

eγi
R(Ji ), for γi ∈N+(Ji ), then

〈µi , eγi
R(Ji )〉R(Ji )∗, R(Ji ) =µi (γi ) = 〈µ∧

i , eγi
R(Ji )〉R(Ji ) =µ ∧

i γi
.

This transforms a dual vector, or covector into a vector in
R(Ji ). Similarly, given a covector Y ∈⊗N

1 R(Ji )∗ is given as in
Eq. (25), we define the substitution operator that holds all
but one coordinate fixed in Y . For an arbitrary j = 1, . . . , N ,

S∗j :

[
⊗N

i=1,
i 6= j

R(Ji )

]
× [⊗N

1 R(Ji )∗
]→R(J j )∗.

If xi ∈R(Ji ) for i = 1, . . . , N ,⟨
S∗j (⊗N

i=1,
i 6= j

xi , Y ), x j

⟩
R(Ji )∗, R(J j )

= ⟨
Y , ⊗N

1 xi
⟩
⊗N

1 R(Ji )∗, ⊗N
1 R(Ji ) .

(31)
Using S ∗

j Y = S∗j (·, Y ) ∈ L(⊗N
i=1,
i 6= j

R(Ji ); R(J j )∗), we can com-

pute its using Eq. (31). To wit, let us agree to use λ to index
the basis vectors of ⊗N

i=1,
i 6= j

R(Ji ), where

{
eλ⊗N

i=1,
i 6= j

R(Ji )
=⊗N

i=1,
i 6= j

eλi
R(Ji ), λ ∈⊗N

i=1,
i 6= j

N+(Ji )
}

(32)

forms a basis of ⊗N
i=1,
i 6= j

R(Ji ); and α j ∈ N+(Ji ) to enumerate

the basis vectors of R(J j ). Suppose that

S ∗
j Y = ∑

λ∈⊗N
i=1,
i 6= j

N+(Ji ),

1≤α j ≤J j

S ∗
j Y (α j , λ)

[
e
α j , ∗
R(J j )

]
⊗

[
⊗N

i=1,
i 6= j

eλi
R(Ji )

]
.

(33)
Let λ ∈⊗N

i=1,
i 6= j

N+(Ji ) and α j ∈N+(Ji ), we see that

S ∗
j Y (α j , λ)

=
⟨
S ∗

j Y (⊗N
i=1,
i 6= j

eλi
R(Ji )), e

α j

R(J j )

⟩
R(Ji )∗, R(J j )

=
⟨

Y ,
[
⊗ j−1

1 eλi
R(Ji )

]
⊗

[
e
α j

R(J j )

]
⊗

[
⊗N

j+1eλi
R(Ji )

]⟩
⊗N

1 R(Ji )∗, ⊗N
1 R(Ji )

= Y
(
(λ j−1, α j ,λ j+N− j )

)
. (34)
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Multilinear Algebra 3. Tensors

It is convenient to rewrite Equation (34) using less clumsy
notation: 6

S ∗
j Y (α j , λ) = Y (α j⌟λ) where α j⌟λ=

(
λ j−1, α j ,λ j+N− j

)
.

We define the matrization of a tensor Y ∈ ⊗N
1 R(Ji )∗ at the

j index ( j = 1, . . . , N ) as the linear map

Y( j ) : ⊗N
i=1,
i 6= j

R(Ji ) →R(J j )

that post-composes S ∗
j Y by the Riesz map of R(J j ). Ac-

cording to Equations (31) and (34), it has coordinate repre-
sentation

Y( j ) =
∑

λ∈⊗N
i=1,
i 6= j

R(Ji ),

1≤α j ≤J j

Y (α j⌟λ)
[

e
α j

R(J j )

]
⊗

[
⊗N

i=1,
i 6= j

eλi ,∗
R(Ji )

]

3.7. Notes and References

In general, the Tracy-Singh ordering prescribes a natural
ordering to subsets, suppose {(Ai , ≤i )}N

i=1 is a collection of

linearly ordered subsets, and Ai = ⊔Mi
j=1 A(i , j ). The usual

way of ordering the disjoint union A =⊔N
i=1 Ai is to write

x ≤ y ∈ A ⇐⇒
{

x, y ∈ Ai and x ≤i y or

x ∈ Ai , y ∈ A j 1 ≤ i < j ≤ N .

Alternatively, we can prescribe an ordering to A that pre-
serves the subset structure.

x ≤ y ∈ A ⇐⇒
{

xi ≤ yi

The substitution operator S j for j = 1, . . . , N is bilinear in
its two arguments, and descends into a linear map also de-
noted by S j

S j ∈ L

([
⊗N

i=1,
i 6= j

R(Ji )

]
⊗ [⊗N

1 R(Ji )∗
]
; R(Ji )∗

)
.

For the case of vector spaces over C, it is customary to
suppress the complex conjugate of the Riesz map, so that
matrization is a linear correspondence from ⊗N

1 C(Ji )∗ into
L(⊗N

i=1,
i 6= j

C(Ji ); C(J j )). We also have the following relation-

ship between the Riesz adjoint and the tensor product.

Let {R(Ji )}N
1 be inner product spaces, then the

tensor product of the Riesz map is the Riesz map
of the tensor product.

6In other words, the functional induced by Y with λ held fixed has co-
ordinates that are equal to the coordinates of Y with λ held fixed.

We give an example of the border rank of a tensor, but
first an equation for writing the kernel of a tensor. Let
φ :

∏N
1 R(Ji ) →W be multilinear, then

φ(bN )−φ(aN ) = ∑
i=N

φ(bi−1,∆i , ai+N−i ), (35)

for all (aN ), (bN ) ∈ ∏N
1 R(Ji ), and ∆i = bi − ai for i =

1, . . . , N .

Proof. We proceed by induction, and Eq. (35) follows by
setting m = k in

φ(aN ) =φ(bm , am+k−m)− ∑
i=m

φ(bi−1,∆i , ai+k−i ) (36)

Base case: set m = 1, by definition of k-linearity (??) of φ.
Since a1 = b1 −∆1,

φ(aN ) =φ(b1 −∆1, a1+N−1)

=φ(b1, a1+N−1)−φ(∆1, a1+N−1).

Suppose Eq. (36) holds for m, since am+1 = bm+1 −∆m+1,

φ(aN )

=φ(bm , am+N−m)− ∑
i=m

φ(bi−1,∆i , ai+N−i )

=φ(bm , am+1, a(m+1)+N−(m+1))− ∑
i=m

φ(bi−1,∆i , ai+N−i )

=φ(bm+1, a(m+1)+k−(m+1))

−φ(bm+1,∆m+1, a(m+1)+N−(m+1))

− ∑
i=m

φ(bi−1,∆i , ai+N−i )

and this proves Eq. (35). ■
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