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Abstract

This work closely follows the paper in [YZZ20] concern-
ing the channel estimation problem of intelligent reflective
surfaces, and at times refers to recent results in complex-
Hadamard matrices found within [TZ06]. We derive two
user-receiver models and their equations for channel esti-
mate errors. We then introduce the problem of optimal re-
flection, and following this, short — but hopefully delight-
ful — expositions of each the various potential solutions
and a terse discussion.

1. Introduction

This text is written for an audience at the undergraduate
level in the applied sciences, with accompanying foot-
notes that aim to keep the working applied mathematician
satisfied. We have deliberately opted for an algebraic ex-
position rather than an analytic one; and have chosen to
avoid argumentation involving stochastic processes and
the invertibility of Fourier Transform, et cetera.

The proper setting for the discussion herein is that of ten-
sor! algebra. We will, however, not pursue this path — and
we encourage the reader to consult [Rom07] for an abstract
introduction to tensors and exterior algebra or [Tam09] for
an introduction from an applied standpoint. Finally, the
interested reader should peruse the now classic texts in
[PP07; BLM12] for a rigorous introduction of the theory of
tele- and digital communications.

2. Mathematical Preliminaries

In what follows, we will make no attempt at distinguish-
ing scalar- or vector-valued quantities, as it should be clear
from the context in which it is presented.

1A (k, 1) -tensor on R™ is a (k + I) multilinear mapping from (M R™) x
(I;R™ into R.
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Figure 1: 4th and 8th Primitive Roots of Unity

Definition 2.1 Primitive kth root of unity

A primitive kth root of unity is a complex number
z € S'% where k is the smallest positive integer such
that zF = 1. The set of all primitive kth roots of unity is

{exp(%i),exp(%iZ), ey 1}. See Figure 1.

asl = {ze Cl, |z| = 1} is the complex 1-sphere.

3. Telecommunications Primer

Note 3.1 Fourier Transforms

The Fourier Transform of x is denoted by F(x)“. It is
also convenient to identify x with its Fourier Trans-
form.” If y = h(x)(£)° denotes an LTI system, an ap-
plication of the Transform readily reads y = Hx. If
¥ = (¥n), x = (xn), and h = (h;,) are vectoral, we also
have y = Hx.

@Whenever it is defined in the classical or distributional sense.
bwhen x € Lz, or in the sense of distributions.
‘In the sense of distributions.

Definition 3.2 Channel

The channel between two points py, py is a complex
number denoted by the symbol — with round brackets
included — (p; ~ p2). If p; wishes to transmit a signal

X to pa, the received signal at p,, denoted by Ry, is given
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by’ Ry = (p1 ~ p2)x.

4Under mild, but non-trivial mathematical regularity conditions,
as discussed earlier.

Given that p, has exact information about the channel,
the receipt R, allows for the recovery of

x=(p1~p2) 'Ry

Which motivates the general problem of channel estima-
tion.

Channel Estimation: How do we estimate the
channel between two (or more) points quickly
and accurately?

Note 3.3 Equations for Channel Estimation

A common technique is to use a pilot sequence: a fi-
nite stream of complex numbers (y1,...x,) that are a-
priori known to p; and p». Let I = (p; ~ p2), where
in the presence of receiver noise” z; during the trans-
mission of the ith symbol, an easy computation shows
that
R it

y during pilot.
Since i ranges through n, we rewrite in matrix form:
(RXi)i:E = diagi:ﬁ (}(l)j‘f + (zi)i:E-

Suppressing the dummy variable i, the receiver com-
putes the estimated channel Hg = x‘l (Ry+2); whereas
the actual channel is given by J = )(‘I(RX). Hence,
the squared 2-norm” of the channel estimation error
is given by |Hgl3 = llx ' (2)13 = 0>P~! where 0 is the
variance of z, and P is the power of p;.

Az is assumed to be a wide-sense stationary L? process.
by p is the p-norm, deterministic or stochastic.

4. Optimal Reflection Problem

Definition 4.1 Intelligent Reflective Surface

An intelligent reflective surface is a n group of (sur-
Jface) elements ({ ;), each with a (reflection) coefficient
wj which is a kth primitive root of unity®.

“%For simplicity, we assume @ j is deterministic.

Let (x;)i=n+1 be our pilot sequence, we write w;; as the co-
efficient of the {j, during y;. One hopes that we can extract
capacity by exploiting this added degree of flexibility. The
main result by the authors of the paper in [YZZ20] concerns
the optimal reflection problem.

Optimal Reflection Problem v1: Given n, k, con-
coct a recipe to optimize the pilot reflection coef-
ficients w;j such that the channel estimation er-
ror | H g5 is kept at a minimum.

Note 4.2 Equations for Estimation of Vector of Chan-
nels with IRS

The transmitted signal from u to {; at time i is sim-

ply the symbol y;, and the receipt at r during y; is a

combination of

Ry, =) wnl{€innyi+wnn yi+zi,

A ];ﬁ( C])((] Jxi+( ) Xi i

direct

reflective
channel

channel

where z; is the noise with variance 0. After massaging
the last expression by means of linear algebra, we have
(urr) } )

(um()((mr)T]X’+zl’ (1)
——

=H

where j is taken through n. J{ refers to the vec-
tor of channels when w; ; = 1. Let us relabel Q(i) =
(1’(wij)j:rz) = (1,wii,...,w;in), and Q is the (n + 1)-
matrix whose ith row is Q(i). By combining Xn+1, We
obtain

Ry=xQH+z and (Qp ' 'Ry,-2) =H.

The receiver cannot distinguish between yQJ{ and z,
as they compute Hg = (Q)()‘I(RX). The channel es-
timation error is therefore Hg = H — Hgz — whose
squared 2-norm takes on a distinguished form:

2 A2l B — 2GR
IHelz = 1Q7 glx ™ 2zl =P 1Q™ " lIg“.

Ry, =[1 @ij]

|-l is the Frobenius norm, where ||A||% = trace(AA™) with A*
denoting the conjugate transpose of A.

5. Hadamard Matrices

Our goal now is to infimize Q-1 II%, such that each w;; isa
primitive kth root of unity,

1wy W1,n+1

a=|! and Qe GL(n+1).
1
1 Wpt1,1  Wn+ln+l

Given n, k, it is clear that a minimizing solution exists. We
temporarily relax the requirement that w;; is a primitive
kth root of unity, and present two important types of ma-
trices.

Definition 5.1 Real-Hadamard Matrix

Areal n-matrix A = (a;;) is Hadamard whenever a; j =
+1, and AAT = nidgn.
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5. Hadamard Matrices

Definition 5.2 Complex-Hadamard Matrix

A complex n-matrix A = (a;;) is Hadamard whenever
a;j€S', and AA* = nidcn.

It would turn out that the Hadamard matrices (if they ex-
ist) are the matrices that minimize |Q ! II%. The following
Proposition holds given any n, k, with the obvious infer-
ence that Rc C.

Proposition 5.3 Hadamard matrices minimize L2
Norms

Every complex-Hadamard n-matrix that is an admiss-
able solution is minimizing, and conversely: every ad-
missable minimizing solution is complex-Hadamard.

Proof. The paper in [YZZ20] contains a sketch of such a
proof. ]

With this, we restate the goal of the paper.

Optimal Reflection Problem v2: If k = 3, then
find a complex n-Hadamard matrix whose en-
tries are kth primtive roots of unity; and when
k = 2: find a real n-Hadamard matrix.

5.1. Real-Hadamard Matrices

In the case of real-Hadamard matrices, it is still an open
question” whether or not a real-Hadamard matrix exists for
an arbitrary n = 1. However, if n is special, then the exis-
tence of such a matrix follows from famous result (which
we will prove!) from matrix algebra. First, we must intro-
duce a matrix operation.

Definition 5.4 Kronecker Product

Let A = (a;;j) be a real matrix, and B € RP*4. The Kro-
necker Product between A and B — denoted by A ® B*
— is found by replacing each of the scalar entries a; ;
of A with the block matrix a; ;B € RP*9. [Tam09]

“The command in Matlab for A® B is kron(A,B).

Example 5.5 Symplectic Form

The standard symplectic form on R?" can be con-
01 . _ 0 idgn
structed by [ %, | ®idg» = [—ian 0 ]

Proposition 5.6 Sylvester’s Construction

Let n = 2™ where m = 0,1,..., there exists a real-

2To be more precise, it is shown that if  is not divisible by 4, and n = 4,

Hadamard n-matrix; and it is given by Hom = [1 1] ®
Hym-1, where H; = idg.

Proof. By inducting on m, we set A = [H H ] where
HHT = nidge. We wish to show that AAT = 2n) idgen; to
wit,

AAT = [H H |8 BT ] _ [HHT+HHT HHT-HHT
“lH-HI|gT —gT |~ |HH'-HHT -H)D"+-H (M7
_ [ @n)idgn 0 _ .
= 0 en) ian ] == (2”) ldRZn, (2)
and therefore A is Hadamard. [ ]

Example 5.7 Sylvester for m = 1,2

Matlab generates real H,, for n = 2", among other n.
We see that

By [ L il s B i HF[H 1],

4Using the Matlab command hadamard (n).

Remark 5.8 Brute-force = Hopeless

Any brute-force attempt towards a real-Hadamard
matrix for n ¢ {2,12 x 2,20 x 2™} is computationally
intractable even for moderately large n — for example,
Higg still eludes us. [TZ06; YZZ20]

5.2. Complex-Hadamard Matrices

It is well known among image and signal processing circles
that complex-Hadamard matrices exist for all 2, even bet-
ter: their entries are precisely the primitive roots of unity.
We introduce a distinguished subset of them to the reader
in Example 5.9.

Example 5.9 DFT Matrices and Rescaled DFT Matri-
ces

In general, the nth Discrete Fourier Transform ma-
trix is DFT(n) = n~1/2[zU~D®=D] where j, k = n, and
z=exp(2min~1).”

The rescaled DFT matrices are defined by removing the
factor of n~1/2, that is: RDFT(n) = n!/2DFT(n).

%The nth DFT matrix is given by df tmtx (n) in Matlab.

Proposition 5.10 Rescaled DFT matrices are
complex-Hadamard

The RDFT matrices, as described in Example 5.9, are
complex-Hadamard for every n = 1.

then no real n-Hadamard matrices can exist. [TZ06] We must also em- P roof. Follows from P roposition 5.3. u
phasize that does not imply the existence of Hy, whenever n =4m.
Updated 2024-12-01 at 12:43 Page 3



The Optimal Reflection Problem

6. Suboptimal Reflection Patterns

Note 5.11 Problems with Rescaled DFT Matrices

An influential paper on the physical design of IRS sug-
gests that k € {4,8} provides the best engineering re-
sults, and increasing k beyond 2* provides negligble
increases in SNR. [Wu+08] We have also thus far as-
sumed that each w; ; is deterministic — a well known
result in telecommunications tells us that a stochas-
tic phase shift® broadens the spectrum. And finally, a
typical IRS will have hundreds if not thousands of ele-
ments, and hence k <« n.

“Brought about by complexity.

Remark 5.12 Sylvester’s Construction doubles any
Hadamard matrix.

Proposition 5.6 applies for an arbitrary real- or
complex-Hadamard matrix H. In addition to Hj,
known real-generators of H," are Hy,, Hab.

“Whose existence is still unproven.
bNot exhaustive.

6. Suboptimal Reflection Patterns

In view of these difficulties, and given that the pursuit of
arbitrary admissable complex-Hadamard matrices seems
to be (to our knowledge) completely hopeless[TZ06], let us
find an approximate solution.

Optimal Reflection Problem v3: Given n = 1,
find a basis Q consisting of entries +1 such that
Q) is as orthogonal as possible.

The authors in [YZZ20] proposed to cut a piece of a
larger, real-Hadamard matrix — and ran simulations that
show that, in some cases, is better some other heuristics.

Definition 6.1 Truncated Hadamard matrix

Let n =1, a matrix H” is called a truncated Hadamard
matrix of size n whenever H}, is a cropped version of a
real p-Hadamard matrix Hy, where p = n.

HY is said to be minimal whenever p is chosen to be
the least of such p.“.

4Such a p exists by Proposition 5.6.

Example 6.2 A fake H; from a truncated Hg

A real 7-Hadamard matrix does not exist, yet we can
approximate one by truncation. We show one such H?
below.

1 1 1
-1 1 -1
1 -1 -1 1 -1]-1

-1 -1|1

8 5
-1 1 -1 -1 1 -1]1
1 -1 -1 -1 -1 1 1

-1 -1 1 -1 1 1 |-1

&
I
e L e e

7. Discussion and Concluding Re-
marks

For the results of their numerical simulations and compar-
isons with other techniques, the authors refer the reader to
the original paper [YZZ20]. We conclude this report with a
short discussion.

First, the method of truncating known Hadamard matrices
seems almost trivial at first, but the authors (of this report)
hope that we have presented sufficient motivation for this.

Second, the simulation laid bare in [YZZ20] does not in-
clude the Hadamard matrices generated from the known
families {Hy2, Ho} U {RDFT(n)}>1.

Third, the simulation results provided only include small
n, up to n < 40 groups or n < 200 elements. Fourth, it is
unknown whether or not the proposed algorithm, in the
second half of the paper (which is beyond the scope of this
report) is viable outside of a single-user setting.

Fifth, it must be stated that the study of almost Hadamard
matrices, and circulant matrices are active areas of math-
ematical research. By looking at geometries such as p =1,
fruitful improvements over the truncation technique may
be found. [BN13].

Finally, it is our hope that this report stands as a techni-
cally sound, rigorously structured document that balances
mathematical depth with clarity, and is a valuable resource
for its intended audience.
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